Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rezvani, S. Javad

  • Google
  • 1
  • 9
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> Thin Films Grown by Magnetron Sputtering under Inert Gas Flow Mixtures as High‐Voltage Cathode Materials for Lithium‐Ion Batteries9citations

Places of action

Chart of shared publication
Zarrabeitia, Maider
1 / 4 shared
Darjazi, Hamideh
1 / 5 shared
Muñoz-Márquez, Miguel Ángel
1 / 4 shared
Acebedo, Begoña
1 / 3 shared
Madinabeitia, Iñaki
1 / 1 shared
Gonzalo, Elena
1 / 3 shared
Fernándezcarretero, Francisco José
1 / 1 shared
Nobili, Francesco
1 / 16 shared
Garcíaluis, Alberto
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Zarrabeitia, Maider
  • Darjazi, Hamideh
  • Muñoz-Márquez, Miguel Ángel
  • Acebedo, Begoña
  • Madinabeitia, Iñaki
  • Gonzalo, Elena
  • Fernándezcarretero, Francisco José
  • Nobili, Francesco
  • Garcíaluis, Alberto
OrganizationsLocationPeople

article

LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub> Thin Films Grown by Magnetron Sputtering under Inert Gas Flow Mixtures as High‐Voltage Cathode Materials for Lithium‐Ion Batteries

  • Zarrabeitia, Maider
  • Darjazi, Hamideh
  • Muñoz-Márquez, Miguel Ángel
  • Acebedo, Begoña
  • Madinabeitia, Iñaki
  • Gonzalo, Elena
  • Fernándezcarretero, Francisco José
  • Nobili, Francesco
  • Rezvani, S. Javad
  • Garcíaluis, Alberto
Abstract

<jats:title>Abstract</jats:title><jats:p>Delivering a commercial high‐voltage spinel LiNi<jats:sub>0.5</jats:sub>Mn<jats:sub>1.5</jats:sub>O<jats:sub>4</jats:sub> (LNMO) cathode electrode for Li‐ion batteries would result in a significant step forward in terms of energy density. However, the structural ordering of the spinel and particle size have considerable effects on the cathode material's cyclability and rate capability, which are crucial challenges to address. Here, a novel mid‐frequency alternating current dual magnetron sputtering method was presented, using different Ar‐N<jats:sub>2</jats:sub> gas mixtures ratios for the process gas to prepare various LNMO thin films with highly controlled morphology and particle size; as determined from X‐ray diffraction, Raman spectroscopy and electron microscopy. It resulted in enhanced cycling and rate performance. This processing method delivered N‐containing LNMO thin film electrodes with up to 15 % increased discharge capacity at 1 C (120 mAh g<jats:sup>−1</jats:sup>) with respect to standard LNMO (grown under only Ar gas flow) thin film electrodes, along with outstanding rate performance up to 10 C (99 mAh g<jats:sup>−1</jats:sup>) in the operating voltage window 3.5–4.85 V <jats:italic>vs</jats:italic>. Li<jats:sup>+</jats:sup>/Li. Besides, electrochemical impedance spectroscopy results showed that the intricate phase transitions present in standard LNMO electrodes were almost suppressed in N‐containing LNMO thin films grown under different Ar‐N<jats:sub>2</jats:sub> gas flow mixtures.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • energy density
  • phase
  • thin film
  • phase transition
  • Lithium
  • electron microscopy
  • Raman spectroscopy