People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hensen, Emiel, J. M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Hemicellulosic Sugars and Lignincitations
- 2023Stability of In2O3 Nanoparticles in PTFEcontaining Gas Diffusion Electrodes for CO2 electroreduction to Formatecitations
- 2023A study of Cu-Rh electrodeposition**citations
- 2023Evolution of bismuth oxide catalysts during electrochemical CO2 reductioncitations
- 2023Role of strontium cations in ZSM-5 zeolite in the methanol-to-hydrocarbons reactioncitations
- 2022Alumina-Supported NiMo Hydrotreating CatalystsAspects of 3D Structure, Synthesis, and Activitycitations
- 2021Twin boundary migration in an individual platinum nanocrystal during catalytic CO oxidationcitations
- 2021Stabilization Effects in Binary Colloidal Cu and Ag Nanoparticle Electrodes under Electrochemical CO2 Reduction Conditionscitations
- 2018Temperature-programmed plasma surface reactioncitations
- 2006Characterization and reactivity of Ga+ and GaO+ cations in zeolite ZSM-5citations
- 2003Characterization of Ga/HZSM-5 and Ga/HMOR synthesized by chemical vapor deposition of trimethylgalliumcitations
Places of action
Organizations | Location | People |
---|
article
A study of Cu-Rh electrodeposition**
Abstract
This manuscript reports the simultaneous electrodeposition of Cu and Rh from an aqueous nitrate solution. The early stages of nucleation and growth of the bimetallic layer were explored using techniques such as cyclic voltammetry and current transients. Non-dimensional Scharifker-Hills graphs showed the occurrence of diffusion-controlled three-dimensional nucleation and growth best described by the Volmer-Weber mechanism. Additionally, different ratios of Cu−Rh electrodes were synthesized by varying the potential of deposition and the Rh content in the deposition bath. Characterization techniques including electron microscopy, x-ray diffraction, and x-ray photoelectron spectroscopy were employed to investigate the chemical composition and structure of the deposits. The results showed a higher amount of Cu 2+ species in the layer than Cu + /Cu 0 when a more negative potential was applied, and when Rh was present in high amounts in the deposition bath. The final morphology of the obtained material proved to be dependent on the deposition potentials and the Cu : Rh content, showing interdependency between the metals.