People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kibsgaard, Jakob
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Stable mass-selected AuTiOx nanoparticles for CO oxidationcitations
- 2024Stable mass-selected AuTiO x nanoparticles for CO oxidationcitations
- 2023Ni 5-x Ga 3+x Catalyst for Selective CO 2 Hydrogenation to MeOH :Investigating the Activity at Ambient Pressure and Low Temperature with Microreactors
- 2023Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidationcitations
- 2023Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidationcitations
- 2023Ultra-high vacuum compatible reactor for model catalyst study of ammonia synthesis at ambient pressurecitations
- 2023Ni5-xGa3+x Catalyst for Selective CO2 Hydrogenation to MeOH
- 2022Quantitative operando detection of electro synthesized ammonia using mass spectrometrycitations
- 2022Increasing Ammonia Formation Rates of Li-Mediated Ammonia Synthesis with High Surface Area Copper Electrodes
- 2020The Dissolution Dilemma for Low Pt Loading Polymer Electrolyte Membrane Fuel Cell Catalystscitations
- 2019A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements.citations
- 2019A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurementscitations
- 2017Effects of Gold Substrates on the Intrinsic and Extrinsic Activity of High-Loading Nickel-Based Oxyhydroxide Oxygen Evolution Catalystscitations
- 2016Mesoporous platinum nickel thin films with double gyroid morphology for the oxygen reduction reactioncitations
- 2007Cobalt growth on two related close-packed noble metal surfacescitations
Places of action
Organizations | Location | People |
---|
article
Quantitative operando detection of electro synthesized ammonia using mass spectrometry
Abstract
In this work the successful operando detection of synthesized ammonia from nitrogen reduction in non-aqueous electrolytes with an electron-ionization mass spectrometer was reported. Using selective ionization at 22 eV together with a highly sensitive micro-chip-based electrochemistry mass spectrometry set-up, quantitative detection of produced ammonia down to few pmol s<sup>−1 </sup>in non-aqueous as well as aqueous electrolytes was demonstrated. The well-defined electrochemical and mass transport environment of the thin-layer electrochemical cell allowed for fundamental studies of the nitrogen reduction process, which was shown to produce ammonia at faradaic efficiencies of 49±3 % at ambient pressure. Moreover, through the operando capabilities of the developed method, it was shown that ammonia production proceeded even after lithium electroplating had been terminated This potentially explained why higher faradaic efficiencies of lithium mediated ammonia synthesis were observed under dynamic cycling conditions. Two possible mechanisms for this behavior were proposed and an outlook towards future research in operando studies of lithium mediated ammonia synthesis was given.