People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yadav, Poonam
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Advances in inorganic, polymer and composite electrolytes: Mechanisms of Lithium-ion transport and pathways to enhanced performancecitations
- 2023Towards solid-state lithium batteries
- 2023Development of composite solid polymer electrolyte for solid-state lithium battery: Incorporating LLZTO in PVDF-HFP/LiTFSIcitations
- 2022A Review on Digitalization Approaches for Battery Manufacturing Processes
- 2022Improved Performance of Solid Polymer Electrolyte for Lithium-Metal Batteries via Hot Press Rollingcitations
- 2020Electrochemical Evaluation of the Stability and Capacity of r‐GO‐Wrapped Copper Antimony Chalcogenide Anode for Li‐Ion batterycitations
- 2018In situ phase transformation synthesis of unique Janus Ag2O/Ag2CO3 heterojunction photocatalyst with improved photocatalytic propertiescitations
- 2018g-C3N4/ NiAl-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO2 into Renewable Fuels
- 2017g-C3N4/ NiAl-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO2 into Renewable Fuelscitations
Places of action
Organizations | Location | People |
---|
article
Electrochemical Evaluation of the Stability and Capacity of r‐GO‐Wrapped Copper Antimony Chalcogenide Anode for Li‐Ion battery
Abstract
<jats:title>Abstract</jats:title><jats:p>Poor cycling stability and capacity fade are primary concerns for next‐generation anode materials for Li‐ion batteries. In non‐carbonaceous anode materials, alloying with Li leads to volume increase that affects practical applications, and increase in particle size, amorphization and reduced conductivity can all lead to a loss of performance. In this work, binary antimony sulfide (Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub>) and ternary copper antimony sulfide (CuSbS<jats:sub>2</jats:sub>) are synthesized by a convenient solvothermal process. These materials are used to study the Li‐active/inactive concept, by incorporating Cu into Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> forming CuSbS<jats:sub>2</jats:sub> wherein Cu is Li inactive whereas Sb is Li active. By direct comparison, we have shown that incorporating Cu into binary antimony sulfide (Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub>) resulting into ternary copper antimony sulfide (CuSbS<jats:sub>2</jats:sub>) addresses the problem of poor conductivity and capacity loss, as Cu provides conductivity leading to enhanced charge transfer and prevents Sb particle aggregation while charge‐discharge by exhibiting spectator or diluent ion effect. The better performance of CuSbS<jats:sub>2</jats:sub> is associated with the better Li<jats:sup>+</jats:sup> ion diffusion in the CuSbS<jats:sub>2</jats:sub> (<jats:italic>D</jats:italic>=8.97×10<jats:sup>−15</jats:sup> cm<jats:sup>2</jats:sup> s<jats:sup>−1</jats:sup>) compared to Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> (<jats:italic>D</jats:italic>=2.76×10<jats:sup>−15</jats:sup> cm<jats:sup>2</jats:sup> s<jats:sup>−1</jats:sup>) and lower series resistance of CuSbS<jats:sub>2</jats:sub> (<jats:italic>R</jats:italic>=4.70×10<jats:sup>5</jats:sup> Ω) compared to Sb<jats:sub>2</jats:sub>S<jats:sub>3</jats:sub> (<jats:italic>R</jats:italic>=5.81×10<jats:sup>8</jats:sup> Ω). We have also investigated the composite with the addition of rGO. The CuSbS<jats:sub>2</jats:sub>‐rGO delivered a reversible capacity of 672 mAh g<jats:sup>−1</jats:sup> after 1000 cycles at 200 mA g<jats:sup>−1</jats:sup> which has shown best performance.</jats:p>