Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mozalev, Alexander

  • Google
  • 9
  • 19
  • 66

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Porous-anodic-alumina-templated Ta-Nb-alloy oxide coatings via the magnetron-sputtering anodizing as novel 3D nanostructured electrodes for energy-storage applications5citations
  • 2024XPS characterization of metal-oxide nanocolumn arrays via anodizing Al/Nb/Mo metal layerscitations
  • 2023Se-doped Nb2O5-Al2O3 composite-ceramic nanoarrays via the anodizing of Al/Nb bilayer in selenic acid6citations
  • 2021Metal-substrate-supported tungsten-oxide nanoarrays via porous-alumina-assisted anodization: from nanocolumns to nanocapsules and nanotubes ; Nanouspořádané pole oxidů wolframu na kovovém substrátu vyrobené pomocí anodizace přes porézní aluminu: od nanosloupků po nanokaplsa a nanotrubky38citations
  • 2021Anodic formation and SEM characterization of zirconium oxide nanostructured filmscitations
  • 2021Dielectric properties of nanostructured mixed-oxide films formed by anodizing Al/Zr bilayerscitations
  • 2021The Growth, Composition, and Functional Properties of Self‐Organized Nanostructured ZrO2‐Al2O3 Anodic Films for Advanced Dielectric Applications7citations
  • 2018Resistive switching in TiO2 nanocolumn arrays electrochemically grown2citations
  • 2018Porous‐Alumina‐Assisted Growth of Nanostructured Anodic Films on Ti−Nb Alloys8citations

Places of action

Chart of shared publication
Gispert-Guirado, Francesc
2 / 2 shared
Llobet, Eduard
3 / 14 shared
Bendová, Mária
5 / 5 shared
Habazaki, Hiroki
1 / 5 shared
Prášek, Jan
3 / 4 shared
Kejík, Lukáš
1 / 1 shared
Guell, Frank
1 / 1 shared
Pytlíček, Zdeněk
2 / 3 shared
Kamnev, Kirill
4 / 4 shared
Sepúlveda Sepúlveda, Lina Marcela
1 / 1 shared
Kolibalova, Eva
1 / 2 shared
Prasek, Jan
1 / 1 shared
Michalicka, Jan
1 / 9 shared
Bendova, Maria
2 / 3 shared
Sepúlveda, Marcela
1 / 2 shared
Hubálek, Jaromír
1 / 4 shared
Márik, Marian
1 / 1 shared
Kolar, Jakub
1 / 1 shared
Gispert Guirado, Francesc
1 / 1 shared
Chart of publication period
2024
2023
2021
2018

Co-Authors (by relevance)

  • Gispert-Guirado, Francesc
  • Llobet, Eduard
  • Bendová, Mária
  • Habazaki, Hiroki
  • Prášek, Jan
  • Kejík, Lukáš
  • Guell, Frank
  • Pytlíček, Zdeněk
  • Kamnev, Kirill
  • Sepúlveda Sepúlveda, Lina Marcela
  • Kolibalova, Eva
  • Prasek, Jan
  • Michalicka, Jan
  • Bendova, Maria
  • Sepúlveda, Marcela
  • Hubálek, Jaromír
  • Márik, Marian
  • Kolar, Jakub
  • Gispert Guirado, Francesc
OrganizationsLocationPeople

article

Porous‐Alumina‐Assisted Growth of Nanostructured Anodic Films on Ti−Nb Alloys

  • Kolar, Jakub
  • Gispert Guirado, Francesc
  • Bendova, Maria
  • Mozalev, Alexander
Abstract

<jats:title>Abstract</jats:title><jats:p>Porous‐anodic‐alumina (PAA)‐assisted anodizing is employed, for the first time, for growing arrays of oxide nanocolumns on Ti−Nb alloy films with up to 58 at% Nb. Beyond about 24 at% Nb in the alloy, the system allows for high formation potentials of 250–420 V, giving columns that are 500–700 nm long, which are 100 % stable during the PAA etch. The stability worsens when lowering the Nb content in the alloy, owing to contamination of the column roots by alumina, which arises from the amorphous‐to‐crystalline transition of the anodic oxide, oxygen evolution, formation of O<jats:sub>2</jats:sub>‐filled nanobubbles within the roots, and development of bigger voids. The voids force the roots to regrow and spread laterally along with anodizing the surrounding Al residues, which increases alumina content in the titania‐based nanoroots. The incorporation of sufficient amounts of Nb<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> in the anodic TiO<jats:sub>2</jats:sub> hinders oxide crystallization and lowers alumina content in the roots, which stabilizes the columns. The two oxides are distributed uniformly along the columns, indicating comparable migration rates of Ti<jats:sup>4+</jats:sup> and Nb<jats:sup>5+</jats:sup> ions in the mixed anodic oxide. This uniform distribution, combined with possibly mixing the oxides at atomic level, is expected to narrow the band gap of the material, which is of vast importance for solar energy conversion applications.</jats:p>

Topics
  • porous
  • impedance spectroscopy
  • amorphous
  • Oxygen
  • void
  • crystallization