People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rolison, Debra
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2021Designing Oxide Aerogels with Enhanced Sorptive and Degradative Activity for Acute Chemical Threatscitations
- 2020Mesoporous Copper Nanoparticle/TiO2 Aerogels for Room-Temperature Hydrolytic Decomposition of the Chemical Warfare Simulant Dimethyl Methylphosphonatecitations
- 2020Electronic Metal–Support Interactions in the Activation of CO Oxidation over a Cu/TiO2 Aerogel Catalystcitations
- 2020Stabilization of reduced copper on ceria aerogels for CO oxidationcitations
- 2020Power of Aerogel Platforms to Explore Mesoscale Transport in Catalysis.citations
- 2019(Keynote) Effect of Architecturally Expressed Electrodes and Catalysts on Energy Storage/Conversion in Aqueous Electrolytes
- 2018Trapping a Ru2O3 Corundum-like Structure at Ultrathin, Disordered RuO2 Nanoskins Expressed in 3Dcitations
- 2017Oxidation-stable plasmonic copper nanoparticles in photocatalytic TiO2 nanoarchitecturescitations
- 2017Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysiscitations
- 2017Competitive Oxygen Evolution in Acid Electrolyte Catalyzed at Technologically Relevant Electrodes Painted with Nanoscale RuO2citations
- 2017Electroless Deposition of Disordered RuO<sub>2</sub> Nanoskins: An Example from the Fourth Quadrant of Electronic Materials
- 2016Aerogel Architectures Boost Oxygen‐Evolution Performance of NiFe2Ox Spinels to Activity Levels Commensurate with Nickel‐Rich Oxidescitations
- 2015Routes to 3D conformal solid-state dielectric polymers: electrodeposition versus initiated chemical vapor depositioncitations
- 2008Self-Limiting Electropolymerization of o-Aminophenol on Ultraporous Carbon Nanoarchitectures for Electrochemical Capacitor Applicationscitations
Places of action
Organizations | Location | People |
---|
article
Aerogel Architectures Boost Oxygen‐Evolution Performance of NiFe2Ox Spinels to Activity Levels Commensurate with Nickel‐Rich Oxides
Abstract
Nickel–iron oxides and oxyhydroxides are among the most active oxygen-evolution reaction (OER) catalysts in alkaline electrolytes. Compositions rich in Ni are reported to show superior activity, but the establishment of competitive OER activity with lower cost, Fe-rich analogues is more desirable for metal–air batteries and other devices that will see large-scale production. Herein, we demonstrate that by controlling pore–solid architecture and the degree of crystallinity, we achieve a single-phase, Fe-rich NiFe2Ox catalyst that matches the OER performance metrics previously demonstrated for compositions with higher Ni-to-Fe ratios. We also show that OER activity linearly tracks increases in the catalyst surface area, whereas the degree of ex situ surface hydroxylation does not play a significant role. To prepare the pore–solid structured forms, NiFe2Ox gels were synthesized by using an epoxide-initiated sol–gel method and subsequently processed to aerogels or xerogels. The activities of these two sol–gel-derived nanostructures were compared with a nanoparticulate analogue with lower specific surface area, prepared by using conventional precipitation methods. The higher surface area and larger pore volume expressed by the NiFe2Ox formed as an aerogel result in a performance-competitive OER overpotential of 356 mV at a current density of 10 mA cm−2, with an approximately 140 mV improvement relative to the low-surface-area, precipitated analogue.