Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Boas, John F.

  • Google
  • 2
  • 14
  • 56

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Stabilization of Low-Valent Iron(I) in a High-Valent Vanadium(V) Oxide Cluster49citations
  • 2015Conditions Favoring the Formation of Monomeric PtIII Derivatives in the Electrochemical Oxidation of trans-[PtII{(p-BrC6F4)NCH2CH2NEt2}Cl(py)]7citations

Places of action

Chart of shared publication
Kastner, Katharina
1 / 2 shared
Jacob, Timo
1 / 22 shared
Anjass, Montaha H.
1 / 1 shared
Streb, Carsten
1 / 3 shared
Nägele, Florian
1 / 1 shared
Ringenberg, Mark
1 / 1 shared
Bond, Alan M.
2 / 7 shared
Shiddiky, Muhammad J. A.
1 / 12 shared
Junk, Peter C.
1 / 5 shared
Ojha, Ruchika
1 / 1 shared
Nafady, Ayman
1 / 13 shared
Mason, Dayna
1 / 1 shared
Torriero, Angel A. J.
1 / 1 shared
Deacon, Glen B.
1 / 1 shared
Chart of publication period
2017
2015

Co-Authors (by relevance)

  • Kastner, Katharina
  • Jacob, Timo
  • Anjass, Montaha H.
  • Streb, Carsten
  • Nägele, Florian
  • Ringenberg, Mark
  • Bond, Alan M.
  • Shiddiky, Muhammad J. A.
  • Junk, Peter C.
  • Ojha, Ruchika
  • Nafady, Ayman
  • Mason, Dayna
  • Torriero, Angel A. J.
  • Deacon, Glen B.
OrganizationsLocationPeople

article

Conditions Favoring the Formation of Monomeric PtIII Derivatives in the Electrochemical Oxidation of trans-[PtII{(p-BrC6F4)NCH2CH2NEt2}Cl(py)]

  • Shiddiky, Muhammad J. A.
  • Junk, Peter C.
  • Ojha, Ruchika
  • Nafady, Ayman
  • Mason, Dayna
  • Torriero, Angel A. J.
  • Deacon, Glen B.
  • Bond, Alan M.
  • Boas, John F.
Abstract

<p>Characterization of the anticancer active compound trans-[Pt<sup>II</sup>{(p-BrC<sub>6</sub>F<sub>4</sub>)NCH<sub>2</sub>CH<sub>2</sub>NEt<sub>2</sub>}Cl(py)] is described along with identification of electrochemical conditions that favor formation of a monomeric one-electron-oxidized Pt<sup>III</sup> derivative. The square-planar organoamidoplatinum(II) compound was synthesized through a carbon dioxide elimination reaction. Structural characterization by using single-crystal X-Ray diffraction reveals a trans configuration with respect to donor atoms of like charges. As Pt<sup>III</sup> intermediates have been implicated in the reactions of platinum anticancer agents, electrochemical conditions favoring the formation of one-electron-oxidized species were sought. Transient cyclic voltammetry at fast scan rates or steady-state rotating disc and microelectrode techniques in a range of molecular solvents and an ionic liquid confirm the existence of a well-defined, chemically and electrochemically reversible one-electron oxidation process that, under suitable conditions, generates a Pt<sup>III</sup> complex, which is proposed to be monomeric [Pt<sup>III</sup>{(p-BrC<sub>6</sub>F<sub>4</sub>)NCH<sub>2</sub>CH<sub>2</sub>NEt<sub>2</sub>}Cl(py)]<sup>+</sup>. Electron paramagnetic resonance spectra obtained from highly non-coordinating dichloromethane/([Bu<sub>4</sub>N][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]) solutions, frozen to liquid nitrogen temperature immediately after bulk electrolysis in a glove box, support the Pt<sup>III</sup> assignment rather than formation of a Pt<sup>II</sup> cation radical. However, the voltammetric behavior is highly dependent on the timescale of the experiments, temperature, concentration of trans-[Pt<sup>II</sup>{(p-BrC<sub>6</sub>F<sub>4</sub>)NCH<sub>2</sub>CH<sub>2</sub>NEt<sub>2</sub>}- Cl(py)], and the solvent/electrolyte. In the low-polarity solvent CH<sub>2</sub>Cl<sub>2</sub> containing the very weakly coordinating electrolyte [Bu<sub>4</sub>N][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>], a well-defined reversible one-electron oxidation process is observed on relatively long timescales, which is consistent with the stabilization of the cationic platinum(III) complex in non-coordinating media. Bulk electrolysis of low concentrations of [Pt{(p-BrC<sub>6</sub>F<sub>4</sub>)NCH<sub>2</sub>CH<sub>2</sub>NEt<sub>2</sub>}Cl(py)] favors the formation of monomeric [Pt<sup>III</sup>{(p-BrC<sub>6</sub>F<sub>4</sub>)NCH<sub>2</sub>CH<sub>2</sub>NEt<sub>2</sub>}Cl(py)]<sup>+</sup>. Simulations allow the reversible potential of the Pt<sup>II</sup>/Pt<sup>III</sup> process and the diffusion coefficient of [Pt<sup>III</sup>{(p-BrC<sub>6</sub>F<sub>4</sub>)- NCH<sub>2</sub>CH<sub>2</sub>NEt<sub>2</sub>}Cl(py)]<sup>+</sup> to be calculated. Reversible electrochemical behavior, giving rise to monomeric platinum(III) derivatives, is rare in the field of platinum chemistry.</p>

Topics
  • impedance spectroscopy
  • compound
  • Carbon
  • x-ray diffraction
  • experiment
  • simulation
  • Platinum
  • Nitrogen
  • cyclic voltammetry