Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Iqbal, Ahmad

  • Google
  • 1
  • 7
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023High‐Performance and Stable Polyaniline@Niobium Sulfide Electrode for an Asymmetric Supercapacitor3citations

Places of action

Chart of shared publication
Mumtaz, Sohail
1 / 5 shared
Afzal, Amir Muhammad
1 / 14 shared
Munnaf, Shaik Abdul
1 / 3 shared
Wabaidur, Saikh Mohammad
1 / 10 shared
Al-Ammar, Essam A.
1 / 7 shared
Choi, Eun Ha
1 / 4 shared
Iqbal, Muhammad Waqas
1 / 15 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Mumtaz, Sohail
  • Afzal, Amir Muhammad
  • Munnaf, Shaik Abdul
  • Wabaidur, Saikh Mohammad
  • Al-Ammar, Essam A.
  • Choi, Eun Ha
  • Iqbal, Muhammad Waqas
OrganizationsLocationPeople

article

High‐Performance and Stable Polyaniline@Niobium Sulfide Electrode for an Asymmetric Supercapacitor

  • Mumtaz, Sohail
  • Afzal, Amir Muhammad
  • Munnaf, Shaik Abdul
  • Wabaidur, Saikh Mohammad
  • Al-Ammar, Essam A.
  • Choi, Eun Ha
  • Iqbal, Ahmad
  • Iqbal, Muhammad Waqas
Abstract

<jats:title>Abstract</jats:title><jats:p>Conducting polymers have attained a lot of interest due to extraordinary conductivity, large pore size, and surprising stability. In this work, the conducting polymer polyaniline (PANI) and niobium sulfide (NbS) were synthesized by polymerization of aniline and hydrothermal method, respectively. The PANI@NbS nanocomposite electrode material had a specific capacity (<jats:italic>C</jats:italic><jats:sub>s</jats:sub>) of 1050 C g<jats:sup>−1</jats:sup>, which is larger than that of the reference sample (NbS = 300 C g<jats:sup>−1</jats:sup>). Besides, the hybrid device (PANI@NbS//PANI@AC) was designed and the electrochemical characteristics were determined. The hybrid device showed an excellent value of <jats:italic>C</jats:italic><jats:sub>s</jats:sub> of 1207 C g<jats:sup>−1</jats:sup> with higher energy density <jats:italic>E</jats:italic><jats:sub>d</jats:sub> and power density <jats:italic>P</jats:italic><jats:sub>d</jats:sub>. The device also exhibited remarkable stability, and 85 % of the initial capacity is retained after 1000 cycles.</jats:p>

Topics
  • nanocomposite
  • density
  • impedance spectroscopy
  • pore
  • polymer
  • energy density
  • niobium