People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Golitsyn, Yury
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Synthesis and Characterization of <sup>15</sup>N‐Labeled Poly(sulfur nitride) in Bulk and in Superconductor Compositescitations
- 2023Synthesis and characterization of 15N-labeled poly(sulfur nitride) in bulk and in superconductor composites
- 2022Festkörper-NMR-Untersuchungen zu Kristallisation und Kettendynamik in linearem und vernetztem Polyethylenglykol
- 2021Dynamic heterogeneity of filler-associated interphases in polymer nanocomposites
Places of action
Organizations | Location | People |
---|
article
Synthesis and Characterization of <sup>15</sup>N‐Labeled Poly(sulfur nitride) in Bulk and in Superconductor Composites
Abstract
<jats:title>Abstract</jats:title><jats:p><jats:sup>15</jats:sup>N‐labeled tetrasulfur tetranitride (S<jats:sub>4</jats:sub><jats:sup>15</jats:sup>N<jats:sub>4</jats:sub>) was synthesized by reacting S<jats:sub>2</jats:sub>Cl<jats:sub>2</jats:sub> with <jats:sup>15</jats:sup>NH<jats:sub>3</jats:sub>. The reaction was finalized with <jats:sup>14</jats:sup>NH<jats:sub>3</jats:sub>. The successful labeling was confirmed by solution <jats:sup>15</jats:sup>N nuclear magnetic resonance (NMR) spectroscopy. S<jats:sub>4</jats:sub><jats:sup>15</jats:sup>N<jats:sub>4</jats:sub> was used for the synthesis of poly(sulfur nitride) S<jats:sup>15</jats:sup>N<jats:italic><jats:sub>x</jats:sub></jats:italic> via the intermediate species of S<jats:sub>2</jats:sub>N<jats:sub>2</jats:sub>. It was a topochemical polymerization in the solid state. The isotope ratio in the labeled polymer was obtained by laser deposition ionization time‐of‐flight mass spectroscopy. Solid‐state <jats:sup>15</jats:sup>N NMR spectroscopy of S<jats:sup>15</jats:sup>N<jats:italic><jats:sub>x</jats:sub></jats:italic> indicates that at least three different chemical environments for <jats:sup>15</jats:sup>N atoms are present in the crystals. Finally, SN<jats:italic><jats:sub>x</jats:sub></jats:italic> was polymerized in the presence of two other superconductors, MgB<jats:sub>2</jats:sub> and yttrium barium copper oxide (YBCO), which demonstrates the capability of SN<jats:italic><jats:sub>x</jats:sub></jats:italic> for grain boundary engineering.</jats:p>