People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Freakley, Simon J.
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Cyclohexanone ammoximation via in situ H2O2 production using TS-1 supported catalystscitations
- 2021Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen speciescitations
- 2020Isolated Pd Sites as Selective Catalysts for Electrochemical and Direct Hydrogen Peroxide Synthesiscitations
- 2018Homocoupling of phenylboronic acid using atomically dispersed gold on carbon catalysts: catalyst evolution before reactioncitations
Places of action
Organizations | Location | People |
---|
article
Homocoupling of phenylboronic acid using atomically dispersed gold on carbon catalysts: catalyst evolution before reaction
Abstract
Coupling reactions to form new C−C bonds are extensively used in industrial synthetic processes. Gold has been shown to be an active catalyst for such reactions; however, conflicting reports exist as to whether cationic Au or metallic Au acts as the active species. We prepared a heterogeneous catalyst consisting of atomically dispersed Au–Clx supported on carbon and showed this to be active in the homocoupling of phenylboronic acid to biphenyl. However; characterisation of the catalyst materials, even after just a short exposure time to the reactants, revealed rapid reduction and sintering of the Au species into larger metallic nanoparticles, which we propose to be the true active species in this instance. This study suggests that if cationic Au is an active catalyst, it must be stabilised against reduction and agglomeration by either forming complexes which are more stable than common chlorides or by strongly anchoring them firmly onto alternative support materials; as in this case the carbon supported Au–Cl species were easily reduced.