Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Freakley, Simon J.

  • Google
  • 4
  • 31
  • 124

University of Bath

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2022Cyclohexanone ammoximation via in situ H2O2 production using TS-1 supported catalysts27citations
  • 2021Ambient base-free glycerol oxidation over bimetallic PdFe/SiO2 by in situ generated active oxygen species9citations
  • 2020Isolated Pd Sites as Selective Catalysts for Electrochemical and Direct Hydrogen Peroxide Synthesis74citations
  • 2018Homocoupling of phenylboronic acid using atomically dispersed gold on carbon catalysts: catalyst evolution before reaction14citations

Places of action

Chart of shared publication
Paris, Charlie B.
1 / 1 shared
Fukuta, Yukimasa
1 / 1 shared
Hutchings, Graham J.
3 / 12 shared
Morgan, David J.
2 / 12 shared
Davies, Thomas E.
2 / 10 shared
Lewis, Richard J.
2 / 6 shared
Singleton, James
1 / 1 shared
Edwards, Jennifer. K.
1 / 1 shared
Yamamoto, Yasushi
1 / 1 shared
Ueura, Kenji
1 / 1 shared
Miedziak, Peter J.
1 / 3 shared
Underhill, Ricci
1 / 1 shared
Edwards, Jennifer K.
1 / 1 shared
Douthwaite, Mark
1 / 2 shared
Folli, Andrea
1 / 8 shared
Armstrong, Robert D.
1 / 3 shared
Murphy, Damien M.
1 / 2 shared
Akdim, Ouardia
1 / 2 shared
Davies, Thomas
1 / 7 shared
He, Qian
1 / 7 shared
Ledendecker, Marc
1 / 3 shared
Malta, Grazia
2 / 2 shared
Mayrhofer, Karl J. J.
1 / 17 shared
Fortunato, Guilherme V.
1 / 1 shared
Pizzutilo, Enrico
1 / 3 shared
Hutchings, Graham John
1 / 4 shared
Dawson, Simon R.
1 / 1 shared
Lu, Li
1 / 7 shared
Kiely, Christopher J.
1 / 6 shared
Kondrat, Simon A.
1 / 6 shared
Parmentier, Tanja E.
1 / 1 shared
Chart of publication period
2022
2021
2020
2018

Co-Authors (by relevance)

  • Paris, Charlie B.
  • Fukuta, Yukimasa
  • Hutchings, Graham J.
  • Morgan, David J.
  • Davies, Thomas E.
  • Lewis, Richard J.
  • Singleton, James
  • Edwards, Jennifer. K.
  • Yamamoto, Yasushi
  • Ueura, Kenji
  • Miedziak, Peter J.
  • Underhill, Ricci
  • Edwards, Jennifer K.
  • Douthwaite, Mark
  • Folli, Andrea
  • Armstrong, Robert D.
  • Murphy, Damien M.
  • Akdim, Ouardia
  • Davies, Thomas
  • He, Qian
  • Ledendecker, Marc
  • Malta, Grazia
  • Mayrhofer, Karl J. J.
  • Fortunato, Guilherme V.
  • Pizzutilo, Enrico
  • Hutchings, Graham John
  • Dawson, Simon R.
  • Lu, Li
  • Kiely, Christopher J.
  • Kondrat, Simon A.
  • Parmentier, Tanja E.
OrganizationsLocationPeople

article

Homocoupling of phenylboronic acid using atomically dispersed gold on carbon catalysts: catalyst evolution before reaction

  • Hutchings, Graham John
  • Freakley, Simon J.
  • Dawson, Simon R.
  • Davies, Thomas E.
  • Lu, Li
  • Kiely, Christopher J.
  • Malta, Grazia
  • Kondrat, Simon A.
  • Parmentier, Tanja E.
Abstract

Coupling reactions to form new C−C bonds are extensively used in industrial synthetic processes. Gold has been shown to be an active catalyst for such reactions; however, conflicting reports exist as to whether cationic Au or metallic Au acts as the active species. We prepared a heterogeneous catalyst consisting of atomically dispersed Au–Clx supported on carbon and showed this to be active in the homocoupling of phenylboronic acid to biphenyl. However; characterisation of the catalyst materials, even after just a short exposure time to the reactants, revealed rapid reduction and sintering of the Au species into larger metallic nanoparticles, which we propose to be the true active species in this instance. This study suggests that if cationic Au is an active catalyst, it must be stabilised against reduction and agglomeration by either forming complexes which are more stable than common chlorides or by strongly anchoring them firmly onto alternative support materials; as in this case the carbon supported Au–Cl species were easily reduced.

Topics
  • nanoparticle
  • impedance spectroscopy
  • Carbon
  • gold
  • forming
  • sintering