Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gayubo, A. G.

  • Google
  • 1
  • 4
  • 38

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Spatial Distribution of Zeolite ZSM-5 within Catalyst Bodies Affects Selectivity and Stability of Methanol-to-Hydrocarbons Conversion38citations

Places of action

Chart of shared publication
Epelde, E.
1 / 1 shared
Weckhuysen, Bm Bert
1 / 46 shared
Ruiz-Martinez, J.
1 / 1 shared
Castaño, P.
1 / 1 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Epelde, E.
  • Weckhuysen, Bm Bert
  • Ruiz-Martinez, J.
  • Castaño, P.
OrganizationsLocationPeople

article

Spatial Distribution of Zeolite ZSM-5 within Catalyst Bodies Affects Selectivity and Stability of Methanol-to-Hydrocarbons Conversion

  • Gayubo, A. G.
  • Epelde, E.
  • Weckhuysen, Bm Bert
  • Ruiz-Martinez, J.
  • Castaño, P.
Abstract

Solid acids, such as zeolites, are used as catalyst materials in a wide variety of important crude oil refinery, bulk chemical synthesis, and green processes. Examples include fluid catalytic cracking (FCC),[1] methanol-to-hydrocarbons (MTH) conversion,[ 2] plastic waste valorization,[3] and biomass catalysis.[4] Industrially, these solid acid catalysts are used as composite materials with the zeolite particles as active components heterogeneously dispersed within a matrix of binders and fillers (alumina or porous solids) then shaped into micro- or millimetersized catalyst bodies.[5] It is known that these matrix materials extend the lifetime of the active zeolite component by providing mechanical strength and protection against poisoning as well as by enhancing heat dissipation and mass transport.

Topics
  • porous
  • impedance spectroscopy
  • polymer
  • strength
  • composite