People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gernaey, Krist V.
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Production of phosphate biofertilizers as a booster for the techno-economic and environmental performance of a first-generation sugarcane ethanol and sugar biorefinerycitations
- 2023The effects of low oxidation-reduction potential on the performance of full-scale hybrid membrane-aerated biofilm reactorscitations
- 2022Economic and environmental analysis of bio-succinic acid production: from established processes to a new continuous fermentation approach with in-situ electrolytic extractioncitations
- 2019A Simulation-Based Superstructure Optimization Approach for Process Synthesis and Design Under Uncertainty
- 2018Mechanistic modeling of cyclic voltammetry: A helpful tool for understanding biosensor principles and supporting design optimizationcitations
- 2018Rapid and Efficient Development of Downstream Bio-Pharmaceutical Processing Alternatives
- 2014The Electrical Breakdown of Thin Dielectric Elastomerscitations
- 2013Applying mechanistic models in bioprocess development.citations
- 2013Applying mechanistic models in bioprocess development.citations
- 2012Evaluation of the energy efficiency of enzyme fermentation by mechanistic modelingcitations
- 2010Embedded resistance wire as a heating element for temperature control in microbioreactorscitations
- 2008Multivariate models for prediction of rheological characteristics of filamentous fermentation broth from the size distributioncitations
Places of action
Organizations | Location | People |
---|
article
Evaluation of the energy efficiency of enzyme fermentation by mechanistic modeling
Abstract
Modeling biotechnological processes is key to obtaining increased productivity and efficiency. Particularly crucial to successful modeling of such systems is the coupling of the physical transport phenomena and the biological activity in one model. We have applied a model for the expression of cellulosic enzymes by the filamentous fungus Trichoderma reesei and found excellent agreement with experimental data. The most influential factor was demonstrated to be viscosity and its influence on mass transfer. Not surprisingly, the biological model is also shown to have high influence on the model prediction. At different rates of agitation and aeration as well as headspace pressure, we can predict the energy efficiency of oxygen transfer, a key process parameter for economical production of industrial enzymes. An inverse relationship between the productivity and energy efficiency of the process was found. This modeling approach can be used by manufacturers to evaluate the enzyme fermentation process for a range of different process conditions with regard to energy efficiency.