Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yong, Ping

  • Google
  • 1
  • 4
  • 279

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2002Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307279citations

Places of action

Chart of shared publication
Macaskie, Lynne
1 / 2 shared
Farr, John
1 / 1 shared
Rowson, Neil
1 / 12 shared
Harris, Ivor
1 / 10 shared
Chart of publication period
2002

Co-Authors (by relevance)

  • Macaskie, Lynne
  • Farr, John
  • Rowson, Neil
  • Harris, Ivor
OrganizationsLocationPeople

article

Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307

  • Macaskie, Lynne
  • Farr, John
  • Rowson, Neil
  • Harris, Ivor
  • Yong, Ping
Abstract

The reduction of Pd(II) to Pd(0) was accelerated by using the sulfate-reducing bacterium Desulfovibrio desulfuricans NCIMB 8307 at the expense of formate or H(2) as electron donors at pH 2-7. With formate no reduction occurred at pH 2, but with H(2) 50% of the activity was retained at pH 2, with the maximum rate (1.3-1.4 micromol min(-1) mg dry cells(-1)) seen at pH 3-7, which was similar to the rate with formate at neutral pH. Excess nitrate was inhibitory to Pd(II) reduction using formate, but not H(2). Chloride ion was inhibitory as low as 100 mM using formate but with H(2) only ca. 25% inhibition was observed at 500 mM Cl(-) and H(2) was concluded to be the electron donor of choice for the potential remediation of industrial wastes. Deposited Pd was visible on the cells using transmission and scanning electron microscopy and analysis by energy dispersive X-ray microanalysis (EDAX) identified the deposit as Pd, confirmed as Pd(0) by X-ray powder diffraction analysis (XRD). The crystal size of the biodeposited Pd(0) was determined to be only 50% of the size of Pd(0) crystals manufactured chemically from Pd(II) at the expense of H(2) and, unlike the chemically manufactured material, the biocrystal size was independent of the pH. The "biological" Pd(0) functioned as a superior chemical catalyst in a test reaction which liberated hydrogen from hypophosphite. Pd, and also Pt and Rh, could be recovered by resting cell suspensions under H(2) from an industrial processing wastewater, suggesting a possible future application of bioprocessing technology for precious metals.

Topics
  • scanning electron microscopy
  • x-ray diffraction
  • Hydrogen
  • Energy-dispersive X-ray spectroscopy
  • palladium