Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Papagiannopoulos, Aristeidis

  • Google
  • 5
  • 23
  • 74

National Hellenic Research Foundation

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Advances in Small Angle Neutron Scattering on Polysaccharide Materials5citations
  • 2021Effects of Polymer Block Length Asymmetry and Temperature on the Nanoscale Morphology of Thermoresponsive Double Hydrophilic Block Copolymers in Aqueous Solutions10citations
  • 2020Combining particle tracking microrheology and viscometry for the study of <scp>DNA</scp> aqueous solutions2citations
  • 2012Merging high doxorubicin loading with pronounced magnetic response and bio-repellent properties in hybrid drug nanocarriers41citations
  • 2008Optical coherence tomography picorheology of biopolymer solutions16citations

Places of action

Chart of shared publication
Sotiropoulos, Konstantinos
1 / 1 shared
Fanova, Anastasiia
1 / 1 shared
Radulescu, Aurel
1 / 29 shared
Pispas, Stergios
2 / 7 shared
Busch, Sebastian
1 / 6 shared
Müller-Buschbaum, Peter
1 / 471 shared
Giaouzi, Despoina
1 / 1 shared
Kreuzer, Lucas P.
1 / 22 shared
Vagias, Apostolos
1 / 6 shared
Stefanopoulou, Evdokia
1 / 1 shared
Bakandritsos, Aristides
1 / 9 shared
Tucek, Jiri
1 / 1 shared
Winnefeld, Frank
1 / 48 shared
Kolokithas-Ntoukas, Argiris
1 / 1 shared
Keiderling, Uwe
1 / 1 shared
Steriotis, Theodore A.
1 / 4 shared
Zboril, Radek
1 / 15 shared
Avgoustakis, Konstantinos
1 / 1 shared
Anagnostou, Eleni N.
1 / 1 shared
Ryukhtin, Vasyl
1 / 6 shared
Bouropoulos, Nikolaos
1 / 7 shared
Waigh, Thomas A.
1 / 6 shared
Sharma, Ramesh C.
1 / 3 shared
Chart of publication period
2024
2021
2020
2012
2008

Co-Authors (by relevance)

  • Sotiropoulos, Konstantinos
  • Fanova, Anastasiia
  • Radulescu, Aurel
  • Pispas, Stergios
  • Busch, Sebastian
  • Müller-Buschbaum, Peter
  • Giaouzi, Despoina
  • Kreuzer, Lucas P.
  • Vagias, Apostolos
  • Stefanopoulou, Evdokia
  • Bakandritsos, Aristides
  • Tucek, Jiri
  • Winnefeld, Frank
  • Kolokithas-Ntoukas, Argiris
  • Keiderling, Uwe
  • Steriotis, Theodore A.
  • Zboril, Radek
  • Avgoustakis, Konstantinos
  • Anagnostou, Eleni N.
  • Ryukhtin, Vasyl
  • Bouropoulos, Nikolaos
  • Waigh, Thomas A.
  • Sharma, Ramesh C.
OrganizationsLocationPeople

article

Combining particle tracking microrheology and viscometry for the study of <scp>DNA</scp> aqueous solutions

  • Papagiannopoulos, Aristeidis
  • Stefanopoulou, Evdokia
Abstract

<jats:title>Abstract</jats:title><jats:p>We use video particle tracking microrheology (VPTMR) in order to investigate the viscoelasticity of salmon DNA and correlate it to its steady‐flow shear‐thinning viscosity. Aqueous solutions of DNA are tested in a wide concentration range from the dilute to the semidilute unentangled concentration regime. The observed mean squared displacement shows power‐law scaling with lag‐time which is equivalent to power‐law behavior of the complex modulus as a function of frequency that is, <jats:styled-content>|<jats:italic>G</jats:italic><jats:sup>*</jats:sup>(<jats:italic>ω</jats:italic>)| = <jats:italic>S</jats:italic> ∙ <jats:italic>ω</jats:italic><jats:sup> <jats:italic>α</jats:italic></jats:sup></jats:styled-content>. The relaxation exponent <jats:styled-content> <jats:italic>α</jats:italic></jats:styled-content> changes abruptly with concentration in the semidilute regime from about 1 to about 0.5 which is the exponent predicted by the Rouse model. The quasi‐property <jats:styled-content> <jats:italic>S</jats:italic></jats:styled-content> follows the scaling of viscosity for uncharged polymers near <jats:italic>θ</jats:italic>‐conditions in the semidilute regime that is, <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/bip23353-math-0001.png" xlink:title="urn:x-wiley:00063525:media:bip23353:bip23353-math-0001" /> with <jats:styled-content> <jats:italic>ν</jats:italic><jats:sub>eff</jats:sub> = 0.50 − 0.51</jats:styled-content>. The shear‐thinning exponent observed by viscometry increases gradually towards the value of 0.5 which has been predicted for Rouse chains under flow. Our findings are in agreement with recent studies of DNA solutions where DNA is treated as a model polymer and addresses the low‐molar mass regime of DNA viscoelasticity. This work demonstrates that the combination of passive particle tracking with viscometry can provide a complete picture on the viscoelasticity of DNA‐based biopolymer materials.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • liquid-assisted grinding
  • viscosity
  • viscoelasticity
  • complex modulus
  • viscometry