Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dalessandro, Alessio

  • Google
  • 1
  • 8
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Water‐based supercapacitors with amino acid electrolytes: a green perspective for capacitance enhancement3citations

Places of action

Chart of shared publication
Zappia, Marilena Isabella
1 / 4 shared
Gamberini, Agnese
1 / 4 shared
Bellani, Sebastiano
1 / 24 shared
Thorat, Sanjay
1 / 1 shared
Bonaccorso, Francesco
1 / 30 shared
Calcagno, Elena
1 / 1 shared
Abruzzese, Matteo
1 / 3 shared
Mastronardi, Valentina
1 / 4 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Zappia, Marilena Isabella
  • Gamberini, Agnese
  • Bellani, Sebastiano
  • Thorat, Sanjay
  • Bonaccorso, Francesco
  • Calcagno, Elena
  • Abruzzese, Matteo
  • Mastronardi, Valentina
OrganizationsLocationPeople

article

Water‐based supercapacitors with amino acid electrolytes: a green perspective for capacitance enhancement

  • Zappia, Marilena Isabella
  • Dalessandro, Alessio
  • Gamberini, Agnese
  • Bellani, Sebastiano
  • Thorat, Sanjay
  • Bonaccorso, Francesco
  • Calcagno, Elena
  • Abruzzese, Matteo
  • Mastronardi, Valentina
Abstract

<jats:p>State‐of‐the art Electrochemical Double‐Layer Capacitors (EDLCs) usually extend their operating electrochemical stability window (ESW) by means of organic electrolytes, or highly concentrated aqueous (water‐in‐salt) electrolytes hindering parasitic water splitting reactions. Organic solvents and high concentrations of ions penalize the dielectric constant of the electrolyte, hence the capacitive performance. We suggest here a new concept of cost‐effective and sustainable aqueous electrolytes based on concentrated amino acid water solutions with a dielectric permittivity much higher than pure water, unlocking the capacitive performance of aqueous EDLC references. Amino acids are natural zwitterionic molecules with a large separation between the positive and negative moiety, leading to huge dipoles with excellent dielectric properties. Some of them (e.g., lysine and proline), have a solubility[[EQUATION]]10m at ambient temperature. With an experimental characterization we prove that aqueous EDLCs based on electrolytes obtained with L‐ lysine or L‐proline added to 2 M NaNO3 solution have +50% of gravimetric capacitance enhancement at low specific currents (0.1A/g) compared to a reference device based on 2M NaNO3 electrolyte without amino acids. A theoretical model suggests that this performance may be further enhanced by increasing the ionic accessibility of commercially available active materials, with porosity optimized to the size of amino acid ions.</jats:p>

Topics
  • dielectric constant
  • porosity