People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dsoke, Sonia
University of Freiburg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Modification of AI surface via acidic treatment and its impact on plating and strippingcitations
- 2024Modification of Al Surface via Acidic Treatment and its Impact on Plating and Strippingcitations
- 2024Hindered Aluminum Plating and Stripping in Urea/NMA/Al(OTF)$_3$ as a Cl-Free Electrolyte for Aluminum Batteries
- 2024Side-reactions of polyvinylidene fluoride and polyvinylidene chloride binders with aluminum chloride-based ionic liquid electrolyte in rechargeable aluminum-batteriescitations
- 2023From high‐pressure $β‐V_2O_5$ to $κ‐Na_xV_2O_5$ ( x = 0.4 − 0.55): A structural, chemical, and kinetic insight into a sodiated phase with a large interlayer spacecitations
- 2023Modification of Al Surface via Acidic Treatment and its Impact on Plating and Stripping
- 2023Surface Properties‐Performance Relationship of Aluminum Foil as Negative Electrode for Rechargeable Aluminum Batteriescitations
- 2020Choosing the right carbon additive is of vital importance for high-performance Sb-based Na-ion batteriescitations
- 2020Probing the Effect of Titanium Substitution on the Sodium Storage in Na₃Ni₂BiO₆ Honeycomb-Type Structurecitations
- 2020Effect of Continuous Capacity Rising Performed by FeS/Fe₃C/C Composite Electrodes for Lithium‐Ion Batteriescitations
- 2020Effect of continuous capacity rising performed by FeS/Fe3C/C composite electrodes for lithium‐ion batteriescitations
- 2019Understanding the Lithium Storage Mechanism in Core–Shell $Fe_{2}O_{3}@C$ Hollow Nanospheres Derived from Metal–Organic Frameworks: An In operando Synchrotron Radiation Diffraction and in operando X-ray Absorption Spectroscopy Studycitations
- 2019Evidence of a Pseudo-Capacitive Behavior Combined with an Insertion/Extraction Reaction Upon Cycling of the Positive Electrode Material $mathrm{P2-Na_{x}Co_{0.9}Ti_{0.1}O_{2}}$ for Sodium-ion Batteriescitations
Places of action
Organizations | Location | People |
---|
article
Surface Properties‐Performance Relationship of Aluminum Foil as Negative Electrode for Rechargeable Aluminum Batteries
Abstract
Rechargeable aluminum batteries with aluminum metal as a negative electrode have attracted wide attention due to the aluminum abundance, its high theoretical capacity and stability under ambient conditions. Understanding and ultimately screening the impact of the initial surface properties of aluminum negative electrodes on the performance and lifetime of the battery cell are of great significance. The purity, surface finishing and degree of hardness of aluminum metal may strongly impact the device’s performance, but these properties have not been systematically studied so far. Here, we present an investigation of the underestimated but crucial role of the aluminum foil surface properties on its electrochemical behavior in aluminum battery half-cells. The results show that commercial aluminum foils with the same purity and degree of hardness but with different thicknesses (from 0.025 to 0.1 mm) exhibit different microstructure and surface roughness, which in turn have an impact on the cyclability. Atomic force microscopy studies show that the aluminum foil is corroded after repeated electrochemical cycling, thus leading to cell failure. The sample with 0.075 mm thickness exhibits the best cycling stability.