People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jankowski, Piotr
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytes:A hierarchical model based on experiments and ab initio simulationscitations
- 2023Boron‐Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Batterycitations
- 2023Boron‐Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Batterycitations
- 2023Boron-Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Batterycitations
- 2023Electrolytes for Zn Batteries:Deep Eutectic Solvents in Polymer Gelscitations
- 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytescitations
- 2022Dual Role of Mo 6 S 8 in Polysulfide Conversion and Shuttle for Mg–S Batteriescitations
- 2022Dual Role of Mo<sub>6</sub>S<sub>8</sub> in Polysulfide Conversion and Shuttle for Mg–S Batteriescitations
- 2022Boron-Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Batterycitations
- 2021Prospects for Improved Magnesocene-Based Magnesium Battery Electrolytescitations
- 2020Multi‐Electron Reactions Enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteriescitations
- 2020Multi-electron reactions enabled by anion-participated redox chemistry for high-energy multivalent rechargeable batteriescitations
- 2020Multi‐electron reactions enabled by anion‐based redox chemistry for high‐energy multivalent rechargeable batteries
- 2018Snapshots of the Hydrolysis of Lithium 4,5-Dicyanoimidazolate-Glyme Solvates. Impact of Water Molecules on Aggregation Processes in Lithium-Ion Battery Electrolytescitations
- 2016Understanding of Lithium 4,5-Dicyanoimidazolate-Poly(ethylene oxide) System: Influence of the Architecture of the Solid Phase on the Conductivitycitations
Places of action
Organizations | Location | People |
---|
article
Boron‐Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Battery
Abstract
<jats:title>Abstract</jats:title><jats:p>Calcium‐metal batteries have received growing attention recently after several studies reporting successful metal plating and stripping with organic electrolytes. Given the low redox potential of metallic calcium, its surface is commonly covered by a passivation layer grown by the accumulation of electrolyte decomposition products. The presence of borate species in this layer has been shown to be a key parameter allowing for Ca<jats:sup>2+</jats:sup> migration and favoring Ca electrodeposition. Here, boron‐based additives are evaluated in order to tune the SEI composition, morphology, and properties. The decomposition of a BF<jats:sub>3</jats:sub>‐based additive is studied at different potentiostatic steps and the resulting SEI layer was thoroughly characterized. SEI growth mechanism is proposed based on both experimental data and DFT calculations pointing at the formation of boron‐crosslinked polymeric matrices. Several boron‐based adducts are explored as SEI‐forming additives for calcium‐metal batteries paving the way to very rich chemistry leading to Ca<jats:sup>2+</jats:sup> conducting SEI.</jats:p>