Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jankowski, Piotr

  • Google
  • 15
  • 53
  • 499

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytes:A hierarchical model based on experiments and ab initio simulations6citations
  • 2023Boron‐Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Battery19citations
  • 2023Boron‐Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Battery19citations
  • 2023Boron-Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Battery19citations
  • 2023Electrolytes for Zn Batteries:Deep Eutectic Solvents in Polymer Gels13citations
  • 2023Unveiling the plating-stripping mechanism in aluminum batteries with imidazolium-based electrolytes6citations
  • 2022Dual Role of Mo 6 S 8 in Polysulfide Conversion and Shuttle for Mg–S Batteries58citations
  • 2022Dual Role of Mo<sub>6</sub>S<sub>8</sub> in Polysulfide Conversion and Shuttle for Mg–S Batteries58citations
  • 2022Boron-Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Battery19citations
  • 2021Prospects for Improved Magnesocene-Based Magnesium Battery Electrolytes3citations
  • 2020Multi‐Electron Reactions Enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteries131citations
  • 2020Multi-electron reactions enabled by anion-participated redox chemistry for high-energy multivalent rechargeable batteries131citations
  • 2020Multi‐electron reactions enabled by anion‐based redox chemistry for high‐energy multivalent rechargeable batteriescitations
  • 2018Snapshots of the Hydrolysis of Lithium 4,5-Dicyanoimidazolate-Glyme Solvates. Impact of Water Molecules on Aggregation Processes in Lithium-Ion Battery Electrolytes8citations
  • 2016Understanding of Lithium 4,5-Dicyanoimidazolate-Poly(ethylene oxide) System: Influence of the Architecture of the Solid Phase on the Conductivity9citations

Places of action

Chart of shared publication
Lysgaard, Steen
2 / 3 shared
Appiah, Williams Agyei
2 / 6 shared
Gollas, Bernhard
2 / 10 shared
Stark, Anna
2 / 2 shared
Garcia-Lastra, Juan Maria
1 / 2 shared
Chang, Jin Hyun
3 / 7 shared
Bhowmik, Arghya
2 / 8 shared
Busk, Jonas
2 / 2 shared
Davoisne, Carine
4 / 14 shared
Bodin, Charlotte
4 / 5 shared
Foix, Dominique
4 / 15 shared
Ponrouch, Alexandre
3 / 10 shared
Courreges, Cecile
1 / 5 shared
Lozinšek, Matic
4 / 7 shared
Radan, Kristian
4 / 4 shared
Dedryvère, Rémi
4 / 23 shared
Forero Saboya, Juan
2 / 4 shared
Yousef, Ibraheem
4 / 4 shared
Saboya, Juan Forero
2 / 2 shared
Courrèges, Cécile
3 / 5 shared
Gregorio, Victor
1 / 1 shared
Tiemblo, Pilar
1 / 2 shared
Garcia, Nuria
1 / 1 shared
Lastra, Juan Maria Garcia
1 / 2 shared
García Lastra, Juan Maria
4 / 15 shared
Vegge, Tejs
5 / 36 shared
Fichtner, Maximilian
5 / 26 shared
Zhao-Karger, Zhirong
3 / 14 shared
Bauer, Werner
2 / 6 shared
Li, Zhenyou
4 / 9 shared
Dasari, Bosubabu
2 / 2 shared
Meng, Zhen
2 / 4 shared
Njel, Christian
5 / 10 shared
Wang, Liping
2 / 7 shared
Lastra, Juan Maria García
2 / 2 shared
Zhaokarger, Zhirong
2 / 6 shared
Johansson, Patrik
1 / 12 shared
Schwarz, Rainer
1 / 1 shared
Younesi, Reza
1 / 22 shared
Randon-Vitanova, Anna
1 / 2 shared
Wachtler, Mario
1 / 1 shared
Parambath, Dr. Vinayan Bhaghavathi
1 / 1 shared
Roy, Ananyo
3 / 7 shared
Maibach, Julia
3 / 9 shared
Vinayan, Bhaghavathi P.
2 / 4 shared
Żukowska, Grażyna
2 / 12 shared
Dranka, Maciej
2 / 7 shared
Ostrowski, Andrzej
1 / 5 shared
Niedzicki, Leszek
1 / 5 shared
Korczak, Jędrzej
1 / 3 shared
Zalewska, Aldona
1 / 8 shared
Wieczorek, Władysław
1 / 19 shared
Marczewski, Maciej
1 / 4 shared
Chart of publication period
2023
2022
2021
2020
2018
2016

Co-Authors (by relevance)

  • Lysgaard, Steen
  • Appiah, Williams Agyei
  • Gollas, Bernhard
  • Stark, Anna
  • Garcia-Lastra, Juan Maria
  • Chang, Jin Hyun
  • Bhowmik, Arghya
  • Busk, Jonas
  • Davoisne, Carine
  • Bodin, Charlotte
  • Foix, Dominique
  • Ponrouch, Alexandre
  • Courreges, Cecile
  • Lozinšek, Matic
  • Radan, Kristian
  • Dedryvère, Rémi
  • Forero Saboya, Juan
  • Yousef, Ibraheem
  • Saboya, Juan Forero
  • Courrèges, Cécile
  • Gregorio, Victor
  • Tiemblo, Pilar
  • Garcia, Nuria
  • Lastra, Juan Maria Garcia
  • García Lastra, Juan Maria
  • Vegge, Tejs
  • Fichtner, Maximilian
  • Zhao-Karger, Zhirong
  • Bauer, Werner
  • Li, Zhenyou
  • Dasari, Bosubabu
  • Meng, Zhen
  • Njel, Christian
  • Wang, Liping
  • Lastra, Juan Maria García
  • Zhaokarger, Zhirong
  • Johansson, Patrik
  • Schwarz, Rainer
  • Younesi, Reza
  • Randon-Vitanova, Anna
  • Wachtler, Mario
  • Parambath, Dr. Vinayan Bhaghavathi
  • Roy, Ananyo
  • Maibach, Julia
  • Vinayan, Bhaghavathi P.
  • Żukowska, Grażyna
  • Dranka, Maciej
  • Ostrowski, Andrzej
  • Niedzicki, Leszek
  • Korczak, Jędrzej
  • Zalewska, Aldona
  • Wieczorek, Władysław
  • Marczewski, Maciej
OrganizationsLocationPeople

article

Boron‐Based Functional Additives Enable Solid Electrolyte Interphase Engineering in Calcium Metal Battery

  • Davoisne, Carine
  • Bodin, Charlotte
  • Foix, Dominique
  • Saboya, Juan Forero
  • Lozinšek, Matic
  • Courrèges, Cécile
  • Radan, Kristian
  • Dedryvère, Rémi
  • Yousef, Ibraheem
  • Jankowski, Piotr
Abstract

<jats:title>Abstract</jats:title><jats:p>Calcium‐metal batteries have received growing attention recently after several studies reporting successful metal plating and stripping with organic electrolytes. Given the low redox potential of metallic calcium, its surface is commonly covered by a passivation layer grown by the accumulation of electrolyte decomposition products. The presence of borate species in this layer has been shown to be a key parameter allowing for Ca<jats:sup>2+</jats:sup> migration and favoring Ca electrodeposition. Here, boron‐based additives are evaluated in order to tune the SEI composition, morphology, and properties. The decomposition of a BF<jats:sub>3</jats:sub>‐based additive is studied at different potentiostatic steps and the resulting SEI layer was thoroughly characterized. SEI growth mechanism is proposed based on both experimental data and DFT calculations pointing at the formation of boron‐crosslinked polymeric matrices. Several boron‐based adducts are explored as SEI‐forming additives for calcium‐metal batteries paving the way to very rich chemistry leading to Ca<jats:sup>2+</jats:sup> conducting SEI.</jats:p>

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • density functional theory
  • Boron
  • forming
  • Calcium
  • electrodeposition
  • decomposition