People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yamauchi, Yusuke
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Dealloying Strategies for Mesoporous AuCu Nanoparticles: Impact on Internal Metallic Structure and Electrocatalytic Performancecitations
- 2024Selection of Fe as a barrier for manufacturing low-cost MgB2 multifilament wires - Advanced microscopy study between Fe and B reactioncitations
- 2023Weak Bonds, Strong Effectscitations
- 2023Flexible Nanoarchitectonics for Biosensing and Physiological Monitoring Applicationscitations
- 2023Mesoporous multimetallic nanospheres with exposed highly entropic alloy sitescitations
- 2023High entropy alloying strategy for accomplishing quintuple-nanoparticles grafted carbon towards exceptional high-performance overall seawater splittingcitations
- 2022Multifunctional materials for photo-electrochemical water splittingcitations
- 2022Plasma-Induced Nanocrystalline Domain Engineering and Surface Passivation in Mesoporous Chalcogenide Semiconductor Thin Filmscitations
- 2022Efficient lithium-ion storage using a heterostructured porous carbon framework and its in situ transmission electron microscopy studycitations
- 2021Self-templated fabrication of hierarchical hollow manganese-cobalt phosphide yolk-shell spheres for enhanced oxygen evolution reactioncitations
- 2020Photodegradation Activity of Poly(ethylene oxide-b-<i>ε</i>-caprolactone)-Templated Mesoporous TiO<sub>2</sub> Coated with Au and Ptcitations
- 2020Holey assembly of two-dimensional iron-doped nickel-cobalt layered double hydroxide nanosheets for energy conversion applicationcitations
- 2020Potassium-Ion Storage in Cellulose-Derived Hard Carboncitations
- 2019Reduced Graphene Oxide (rGO) Prepared by Metal-Induced Reduction of Graphite Oxidecitations
- 2019Enhancement of thermoelectric properties of La-doped SrTiO <sub>3</sub> bulk by introducing nanoscale porositycitations
- 2018Graphene-oxide-loaded superparamagnetic iron oxide nanoparticles for ultrasensitive electrocatalytic detection of microRNAcitations
- 2017Self-assembly of polymeric micelles made of asymmetric polystyrene-b-polyacrylic acid-b-polyethylene oxide for the synthesis of mesoporous nickel ferritecitations
- 2017Nano-micro-porous skutterudites with 100% enhancement in ZT for high performance thermoelectricitycitations
- 2016Cyano-Bridged Trimetallic Coordination Polymer Nanoparticles and Their Thermal Decomposition into Nanoporous Spinel Ferromagnetic Oxidescitations
Places of action
Organizations | Location | People |
---|
article
Potassium-Ion Storage in Cellulose-Derived Hard Carbon
Abstract
<p>Potassium-ion storage is being explored by researchers for its advantages in forming graphite-based intercalation compounds, with cost-effective production compared to lithium-ion systems. However, its poor performance in graphite-based platforms, owing to the volume expansion required for intercalation, has demanded alternative materials for reversible potassiation. Herein, we demonstrate a simple one-step pyrolysis approach to develop an amorphous hard carbon material from commercial cellulose for high-performance potassium-ion batteries (KIB). The larger interlayer spacing (∼0.4 nm) alongside the electronegative oxygen functional groups promotes potassium-ion storage. High capacity, good rate and long cycling performance with lower-volume expansion could be credited to the amorphous carbon that possesses turbostratic nanodomains. Further, oxygen functional groups on the carbon material are identified in our experimental studies, and density functional theory simulations indicate that these are likely to enhance the potassium-ion capacity of the materials.</p>