People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Avci, Huseyin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023Simple and low cost antibiotic susceptibility testing for mycobacterium tuberculosis using screen-printed electrodescitations
- 2022An electrochemical biosensor with integrated microheater to improve the sensitivity of electrochemical nucleic acid biosensorscitations
- 2021Four-Dimensional Printing Technology at the Frontier of Advanced Modeling and Applications in Brain Tissue Engineeringcitations
- 2020Impedance testing of porous Si3N4 scaffolds for skeletal implant applicationscitations
Places of action
Organizations | Location | People |
---|
article
Simple and low cost antibiotic susceptibility testing for mycobacterium tuberculosis using screen-printed electrodes
Abstract
<p>One quarter of the global population is thought to be latently infected by Mycobacterium tuberculosis (TB) with it estimated that 1 in 10 of those people will go on to develop active disease. Due to the fact that M. tuberculosis (TB) is a disease most often associated with low- and middle-income countries, it is critical that low-cost and easy-to-use technological solutions are developed, which can have a direct impact on diagnosis and prescribing practice for TB. One area where intervention could be particularly useful is antibiotic susceptibility testing (AST). This work presents a low-cost, simple-to-use AST sensor that can detect drug susceptibility on the basis of changing RNA abundance for the typically slow-growing M. tuberculosis (TB) pathogen in 96 h using screen-printed electrodes and standard molecular biology laboratory reactionware. In order to find out the sensitivity of applied sensor platform, a different concentration (10<sup>8</sup>–10<sup>3</sup> CFU/mL) of M. tuberculosis was performed, and limit of detection and limit of quantitation were calculated as 10<sup>3.82</sup> and 10<sup>11.59</sup> CFU/mL, respectively. The results display that it was possible to detect TB sequences and distinguish antibiotic-treated cells from untreated cells with a label-free molecular detection. These findings pave the way for the development of a comprehensive, low-cost, and simple-to-use AST system for prescribing in TB and multidrug-resistant tuberculosis.</p>