Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dahiru, Abubakar

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Optimizing Electrodeposition of Polyaniline on Various Woven Steel Mesh Sizes for Enhanced Supercapacitor Performancecitations

Places of action

Chart of shared publication
Dalhatu, Ahmad Abbas
1 / 1 shared
Al-Betar, Abdul-Rahman
1 / 1 shared
Aziz, Md. Abdul
1 / 7 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Dalhatu, Ahmad Abbas
  • Al-Betar, Abdul-Rahman
  • Aziz, Md. Abdul
OrganizationsLocationPeople

article

Optimizing Electrodeposition of Polyaniline on Various Woven Steel Mesh Sizes for Enhanced Supercapacitor Performance

  • Dalhatu, Ahmad Abbas
  • Al-Betar, Abdul-Rahman
  • Dahiru, Abubakar
  • Aziz, Md. Abdul
Abstract

<jats:p>The development of efficient supercapacitors hinges on the innovation of superior electrodes, which are pivotal in augmenting their energy storage capabilities. Supercapacitors, recognized for their high‐power density and extended cycle life, play a crucial role as sustainable solutions in addressing energy storage challenges. A fundamental aspect of supercapacitor functionality involves the electrode material, which works in concert with other key components such as the current collector, separator, and electrolyte. This study focuses on evaluating the impact of the current collector material on the performance of symmetric supercapacitors. We investigated the electropolymerization of polyaniline on woven steel mesh current collectors of varying mesh sizes, ranging from 20 to 200 mesh per inch, using assorted deposition conditions. The electrochemically modified woven steel meshes were utilized to construct symmetric supercapacitors. The electrochemical performance of the assembled supercapacitors, configured in a two‐electrode system, was investigated using a variety of electrochemical techniques to better understand the kinetics of electrolyte ion migration. Notably, the 20‐mesh size, characterized by the fewest pores per inch, demonstrated superior performance with an optimum capacitance of 4730 mF/cm2, an energy density of 317.8 µWh/cm2, and a power density of 400 µW/cm2 at a current density of 1 mA/cm2.</jats:p>

Topics
  • density
  • pore
  • energy density
  • steel
  • current density
  • electrodeposition
  • woven