Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ji, Kunlang

  • Google
  • 2
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024(Ca0.5Mn0.5)2MnTeO6 – An Anomalously Stable High‐PressureDouble Perovskitecitations
  • 2023Doping-independent 120° magnetism in the quadruple perovskite CaMn3V4O12citations

Places of action

Chart of shared publication
Attfield, John Paul
1 / 1 shared
Almadhi, Azizah
1 / 1 shared
Injac, Sean
1 / 2 shared
Ritter, Clemens
1 / 25 shared
Denis Romero, Fabio
1 / 2 shared
Attfield, J. Paul
1 / 10 shared
Colin, Claire
1 / 12 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Attfield, John Paul
  • Almadhi, Azizah
  • Injac, Sean
  • Ritter, Clemens
  • Denis Romero, Fabio
  • Attfield, J. Paul
  • Colin, Claire
OrganizationsLocationPeople

article

(Ca0.5Mn0.5)2MnTeO6 – An Anomalously Stable High‐PressureDouble Perovskite

  • Attfield, John Paul
  • Almadhi, Azizah
  • Injac, Sean
  • Ritter, Clemens
  • Ji, Kunlang
Abstract

<jats:p>High pressure high temperature treatments of the composition CaMnMnTeO6 are found to yield only an A2BB’O6‐type double perovskite (Ca0.5Mn0.5)2MnTeO6, rather than a AA’BB’O6 double double perovskite with A‐ and B‐ site cation order as found in analogs CaMnMnReO6 and CaMnMnWO6 with similar cation sizes. Double perovskite (Ca0.5Mn0.5)2MnTeO6 adopts a monoclinic structure in space group P21/n with a framework of highly tilted MnO6 and TeO6 octahedra enclosing disordered Ca2+ and Mn2+ cations. Magnetic measurements show that (Ca0.5Mn0.5)2MnTeO6 is a highly frustrated spin glass with a freezing transition at 5 K, and no long‐range spin order is apparent by neutron diffraction at 1.6 K.</jats:p>

Topics
  • perovskite
  • impedance spectroscopy
  • glass
  • glass
  • neutron diffraction
  • space group