Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Albadrani, Ahmed

  • Google
  • 1
  • 3
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Synthesis and Oxygen Evolution Reaction Application of a Co‐Cd Based Bimetallic Metal‐Organic Framework7citations

Places of action

Chart of shared publication
Fettouhi, Mohammed
1 / 2 shared
Helal, Aasif
1 / 1 shared
Aziz, Md Abdul
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Fettouhi, Mohammed
  • Helal, Aasif
  • Aziz, Md Abdul
OrganizationsLocationPeople

article

Synthesis and Oxygen Evolution Reaction Application of a Co‐Cd Based Bimetallic Metal‐Organic Framework

  • Albadrani, Ahmed
  • Fettouhi, Mohammed
  • Helal, Aasif
  • Aziz, Md Abdul
Abstract

<jats:p>In the realm of renewable energy technologies, the development of efficient and durable electrocatalysts is paramount, especially for applications like electrochemical water splitting. This research focuses on synthesizing a novel bimetallic metal‐organic framework (BMMOF11) using earth‐abundant elements, cobalt (Co) and cadmium (Cd). BMMOF11 showcases a distinctive structure with distorted octahedral chains of CoO and CdO, linked by benzene tricarboxylic acid (BTC). Our study primarily investigates the electrocatalytic efficiency of BMMOF11, particularly in water oxidation reactions. For practical analysis, BMMOF11 was anchored onto nickel foam, forming BMMOF11/NF, to evaluate its electrocatalytic properties. Electrochemical testing revealed that BMMOF11/NF begins water oxidation at an onset potential of 1.62 V versus RHE, demonstrating high activity with a lower overpotential of 0.4 V to achieve a current density of 10 mA/cm². Moreover, BMMOF11/NF maintained stable water splitting performance, sustaining a current density of approximately 70 mA/cm2 under a voltage of 1.9 V relative to RHE. These findings indicate that BMMOF11/NF is a promising candidate for large‐scale electrochemical water splitting, offering a blend of high activity and stability</jats:p>

Topics
  • density
  • impedance spectroscopy
  • nickel
  • Oxygen
  • forming
  • cobalt
  • current density
  • Cadmium