Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Maity, Tuhin

  • Google
  • 2
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Tuneable Vertical Hysteresis Loop Shift in Exchange Coupled La 0.67 Sr 0.33 MnO 3 ‐SrRuO 3 Bilayercitations
  • 2024Tuneable Vertical Hysteresis Loop Shift in Exchange Coupled La<sub>0.67</sub>Sr<sub>0.33</sub>MnO<sub>3</sub>‐SrRuO<sub>3</sub> Bilayercitations

Places of action

Chart of shared publication
Anna De Hóra, Muireann
1 / 1 shared
Akram, Wasim
2 / 2 shared
Macmanusdriscoll, Judith L.
1 / 2 shared
Li, Weiwei
2 / 15 shared
Bansal, Manisha
2 / 2 shared
Giri, Samir Kumar
2 / 2 shared
Hóra, Muireann Anna De
1 / 1 shared
Driscoll, Judith
1 / 7 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Anna De Hóra, Muireann
  • Akram, Wasim
  • Macmanusdriscoll, Judith L.
  • Li, Weiwei
  • Bansal, Manisha
  • Giri, Samir Kumar
  • Hóra, Muireann Anna De
  • Driscoll, Judith
OrganizationsLocationPeople

article

Tuneable Vertical Hysteresis Loop Shift in Exchange Coupled La<sub>0.67</sub>Sr<sub>0.33</sub>MnO<sub>3</sub>‐SrRuO<sub>3</sub> Bilayer

  • Hóra, Muireann Anna De
  • Akram, Wasim
  • Li, Weiwei
  • Maity, Tuhin
  • Bansal, Manisha
  • Driscoll, Judith
  • Giri, Samir Kumar
Abstract

<jats:title>Abstract</jats:title><jats:p>Harnessing extra degrees of freedom at the heterostructure interface is of crucial importance to bring additional functionalities in modern spintronic devices. Here, a vertical hysteresis loop shift (vertical bias) is demonstrated in an exchange biased system of ferromagnetic thin film heterostructure of La<jats:sub>0.67</jats:sub>Sr<jats:sub>0.33</jats:sub>MnO<jats:sub>3</jats:sub> (10 nm)‐SrRuO<jats:sub>3</jats:sub> (SRO) (20 nm), after field cooling with ±1 T below 100 K close to the Curie temperature (<jats:italic>T</jats:italic><jats:sub>C</jats:sub>) ≈125 K of SRO and loop sweeping under ±1 T field. Besides, a positive exchange bias (H<jats:sub>EB</jats:sub>) is also observed below <jats:italic>T</jats:italic><jats:sub>C</jats:sub> ≈125 K showing a maximum ≈11 mT at 2 K. The vertical shift is modeled closely using micromagnetic simulations and the layers’ thickness dependency is demonstrated. The reason for the shift is attributed to the simultaneous role of the interfacial antiferromagnetic interaction and the hard anisotropy of SRO against the Zeeman energy. Finally, from the experimental and simulation results, a generalized model of controllable and tunable vertical shift is proposed applicable for other material systems possessing glassy phases, uncompensated/canted spins, absent interfacial exchange coupling, etc., and hence can be informative for the use of vertical shift in future spintronic devices.</jats:p>

Topics
  • impedance spectroscopy
  • phase
  • thin film
  • simulation
  • interfacial
  • Curie temperature