Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hrbinič, Katja

  • Google
  • 1
  • 8
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Rapid tooling for rubber extrusion molding by digital light processing 3D printing with dual curable vitrimers1citations

Places of action

Chart of shared publication
Fleisch, Mathias
1 / 4 shared
Schuschnigg, Stephan
1 / 34 shared
Reisinger, David
1 / 11 shared
Alabiso, Walter
1 / 6 shared
Höller, Rita
1 / 2 shared
Rossegger, Elisabeth
1 / 7 shared
Schlögl, Sandra
1 / 33 shared
Waly, Christoph
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Fleisch, Mathias
  • Schuschnigg, Stephan
  • Reisinger, David
  • Alabiso, Walter
  • Höller, Rita
  • Rossegger, Elisabeth
  • Schlögl, Sandra
  • Waly, Christoph
OrganizationsLocationPeople

article

Rapid tooling for rubber extrusion molding by digital light processing 3D printing with dual curable vitrimers

  • Fleisch, Mathias
  • Hrbinič, Katja
  • Schuschnigg, Stephan
  • Reisinger, David
  • Alabiso, Walter
  • Höller, Rita
  • Rossegger, Elisabeth
  • Schlögl, Sandra
  • Waly, Christoph
Abstract

<jats:title>Abstract</jats:title><jats:p>For the manufacture of extrusion dies, three‐dimensional (3D) printing with photopolymers offers numerous advantages including flexibility, high surface quality, decent build speed, low costs and a reduced amount of waste. However, the majority of photocurable resins used in vat photopolymerization 3D printing rely on acrylates, which entail 3D‐printed objects with poor mechanical properties. In particular, the high brittleness limits their application in rapid tooling, for which tough materials with high glass transition temperatures (<jats:italic>T</jats:italic><jats:sub>g</jats:sub>) are required. In the present study, we highlight the use of dual curable acrylate‐epoxy resins with dynamic covalent bonds for the direct fabrication of extrusion dies. During digital light processing (DLP) 3D printing the acrylate network is formed, whose toughness and thermal stability are significantly enhanced by the thermoactivated formation of a second network. By following a postbaking procedure, aminoglycidiyl monomers are cured with an anhydride hardener bearing bulky norbornene groups yielding interpenetrating polymer networks with a <jats:italic>T</jats:italic><jats:sub>g</jats:sub> &gt; 100°C. The tertiary amine groups present in the structure of the aminoglycidyl derivatives do not only accelerate the ring‐opening reaction but also act as internal catalysts and activate bond exchange reactions between free –OH groups and ester moieties available in the photopolymer. This is confirmed by rheometer studies showing a distinctive stress relaxation at elevated temperature and giving rise to a possible reprocessability of the 3D‐printed dies. With a selected resin formulation, a set of dies is printed by DLP 3D printing, with which a highly filled rubber compound is successfully extruded. The results clearly show that dual curable resins with dynamic covalent bonds are a promising class of material for rapid tooling and pave the way towards a customized and convenient fabrication of extrusion dies for rubber processing.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • compound
  • extrusion
  • glass
  • glass
  • glass transition temperature
  • resin
  • rubber
  • ester
  • amine
  • vat photopolymerization