Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hahn, Carolina

  • Google
  • 1
  • 7
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Balancing thermal conductivity, dielectric, and tribological properties in polyamide 1010 with 2D nanomaterials1citations

Places of action

Chart of shared publication
Staffa, Lucas
1 / 1 shared
Pinto, Gabriel M.
1 / 2 shared
Vieira, Lúcia
1 / 2 shared
Helal, Emna
1 / 2 shared
David, Eric
1 / 8 shared
Macêdo Fechine, Guilhermino José
1 / 6 shared
Demarquette, Nicole R.
1 / 2 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Staffa, Lucas
  • Pinto, Gabriel M.
  • Vieira, Lúcia
  • Helal, Emna
  • David, Eric
  • Macêdo Fechine, Guilhermino José
  • Demarquette, Nicole R.
OrganizationsLocationPeople

article

Balancing thermal conductivity, dielectric, and tribological properties in polyamide 1010 with 2D nanomaterials

  • Staffa, Lucas
  • Pinto, Gabriel M.
  • Vieira, Lúcia
  • Hahn, Carolina
  • Helal, Emna
  • David, Eric
  • Macêdo Fechine, Guilhermino José
  • Demarquette, Nicole R.
Abstract

<jats:title>Abstract</jats:title><jats:p>Low electrical conductivity and high heat dissipation are crucial for electronic packaging materials. Additionally, friction is critical for the lifespan and energy efficiency of components. To address these requirements, polymer nanocomposites based on bio‐based polyamide 1010 and ultra‐low contents of 2D nanomaterials were produced by melt‐blending. Graphene oxide, hexagonal boron nitride, and molybdenum disulfide were selected for their two‐dimensional structure and electrical insulation, providing high thermal conductivity while preserving the polymer's dielectric nature. Hybrid nanocomposites were also produced to explore potential synergistic effects. Results showed all compositions maintained the polymer's intrinsic dielectric properties. Although the friction coefficient increased slightly compared with neat polyamide, all nanocomposites remained within the low‐friction range required for low‐friction materials. Thermal conductivity improved by 5%–10% compared with unfilled polyamide, with hybrid systems performing slightly better, indicating a minor synergistic effect. Despite these enhancements being modest compared with the literature, achieving high thermal conductivity usually requires over 20 wt% of nanofiller, which is detrimental to mechanical performance. In this study, at most 0.5 wt% was used, with composites being obtained directly through melt‐blending. This highlights their potential as low‐content additives for thermal interface materials without compromising other essential properties.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • molybdenum
  • polymer
  • melt
  • nitride
  • Boron
  • thermal conductivity
  • electrical conductivity