Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Meuchelböck, Johannes

  • Google
  • 6
  • 9
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Numerical study on the influence of cell gas on the compression behavior of expanded polypropylenecitations
  • 2023Effect of density on the fatigue behaviour of EPP and ETPU bead foams3citations
  • 2023Zum Zusammenspiel von Polymer, Morphologie und Zellgas bei der Deformation von Partikelschäumencitations
  • 2023Mechanische Charakterisierung von Partikelschäumen im Vakuum: Neue Einblicke durch innovative Prüfmethodikcitations
  • 2023Cell structure analysis of expanded polypropylene bead foams under compressioncitations
  • 2022Simulationsstrategie für hierarchisch aufgebaute Partikelschäumecitations

Places of action

Chart of shared publication
Grüber, Bernd
6 / 20 shared
Koch, Ilja
6 / 39 shared
Müller-Pabel, Michael
6 / 34 shared
Gude, Mike
6 / 775 shared
Ruckdäschel, Holger
6 / 31 shared
Altstädt, Volker
2 / 57 shared
Standau, Tobias
1 / 3 shared
Preiss, Gina
1 / 1 shared
Preiß, Gina
4 / 4 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Grüber, Bernd
  • Koch, Ilja
  • Müller-Pabel, Michael
  • Gude, Mike
  • Ruckdäschel, Holger
  • Altstädt, Volker
  • Standau, Tobias
  • Preiss, Gina
  • Preiß, Gina
OrganizationsLocationPeople

article

Numerical study on the influence of cell gas on the compression behavior of expanded polypropylene

  • Grüber, Bernd
  • Koch, Ilja
  • Müller-Pabel, Michael
  • Gude, Mike
  • Meuchelböck, Johannes
  • Ruckdäschel, Holger
Abstract

Expanded polypropylene (EPP) bead foam mainly consists of entrapped gas within closed polymer cells. This numerical study presents a method to account for the influence of this entrapped gas on the compression behavior of EPP foam. The method developed combines a finite element (FE) model of the foam structure with a smoothed particle hydrodynamics model to simulate the effect of the cell gas. The foam structure is modeled using the open-source software neper, the FE simulations are conducted using the explicit FE solver of LS-Dyna. Numerically obtained stress–strain curves for the investigated foam materials, both with and without considering the cell gas, are compared with experimental data from tests using a specially designed vacuum test chamber. The comparison shows a good agreement between numerical and experimental results, indicating that entrapped cell gas increases the structural stiffness under compression. However, in load-hold-unload tests, the numerical model fails to accurately capture the stress relaxation behavior observed during the hold phase of the experiment. This study highlights the significant impact of cell gas on the compression behavior of EPP foam and the need for further refinement in simulation strategy to capture effects like the stress relaxation and multiaxial loading.

Topics
  • impedance spectroscopy
  • polymer
  • phase
  • experiment
  • simulation
  • laser sintering