Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Grønborg, Frederik

  • Google
  • 3
  • 8
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Optimizing TPU performance: The role of mold temperature on injection molding of TPU1citations
  • 2023Simple sensor manufacturing by Laser Powder Bed Fusion of conductive polymer blendscitations
  • 2019Strain gauge filament for extrusion based additive manufacturingcitations

Places of action

Chart of shared publication
Spangenberg, Jon
1 / 76 shared
Daugaard, Anders Egede
3 / 80 shared
Susoff, Markus Lothar
1 / 1 shared
Pedersen, David Bue
3 / 81 shared
Lalwani, Aakil Raj
1 / 3 shared
Wolstrup, Anders Frem
1 / 2 shared
Budden, Christian Leslie
1 / 5 shared
Zsurzsan, Tiberiu-Gabriel
1 / 5 shared
Chart of publication period
2024
2023
2019

Co-Authors (by relevance)

  • Spangenberg, Jon
  • Daugaard, Anders Egede
  • Susoff, Markus Lothar
  • Pedersen, David Bue
  • Lalwani, Aakil Raj
  • Wolstrup, Anders Frem
  • Budden, Christian Leslie
  • Zsurzsan, Tiberiu-Gabriel
OrganizationsLocationPeople

article

Optimizing TPU performance: The role of mold temperature on injection molding of TPU

  • Grønborg, Frederik
  • Spangenberg, Jon
  • Daugaard, Anders Egede
  • Susoff, Markus Lothar
  • Pedersen, David Bue
Abstract

This study explores the influence of mold temperatures below 60°C on thermoplastic polyurethane (TPU) properties during injection molding, focusing on phase separation and its impact on mechanical, thermal, and viscoelastic properties. Using a combination of micro-indentation, temperature scanning stress relaxation, and conventional characterization methods, the research highlights how increased mold temperatures promote more distinct phase separation, enhancing mechanical stability and physical properties. The novel use of micro-indentation revealed a gradient in material stiffness from the surface to the core of injection-molded samples, attributed to differential cooling rates and shear forces, which affect phase separation and crystallinity of the hard domains. These insights are critical for applications requiring specific surface properties and underscore the importance of understanding the interplay between chemical composition and processing conditions for optimizing TPU properties. Furthermore, the paper shows that tensile testing, differential scanning calorimetry, and Shore hardness cannot quantify the effects of mold temperatures below 60°C. The research highlights the influence and importance of chemical composition, rheological history, and thermal history on the properties of TPU.

Topics
  • surface
  • phase
  • chemical composition
  • differential scanning calorimetry
  • injection molding
  • thermoplastic
  • crystallinity
  • shore hardness