Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nascimento, Emanuel Pereira Do

  • Google
  • 1
  • 6
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Tuning the mechanical and thermomechanical properties through the combined effect of crosslinking and annealing in poly(lactic acid)/<scp>acrylonitrile‐EPDM</scp>‐styrene blends5citations

Places of action

Chart of shared publication
Wellen, Renate Maria Ramos
1 / 2 shared
Silva, Adriano Lima Da
1 / 1 shared
Ferreira, Eduardo Da Silva Barbosa
1 / 2 shared
Luna, Carlos Bruno Barreto
1 / 6 shared
Araújo, Edcleide Maria
1 / 6 shared
Albuquerque, Ananda Karoline Camelo De
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Wellen, Renate Maria Ramos
  • Silva, Adriano Lima Da
  • Ferreira, Eduardo Da Silva Barbosa
  • Luna, Carlos Bruno Barreto
  • Araújo, Edcleide Maria
  • Albuquerque, Ananda Karoline Camelo De
OrganizationsLocationPeople

article

Tuning the mechanical and thermomechanical properties through the combined effect of crosslinking and annealing in poly(lactic acid)/<scp>acrylonitrile‐EPDM</scp>‐styrene blends

  • Wellen, Renate Maria Ramos
  • Silva, Adriano Lima Da
  • Nascimento, Emanuel Pereira Do
  • Ferreira, Eduardo Da Silva Barbosa
  • Luna, Carlos Bruno Barreto
  • Araújo, Edcleide Maria
  • Albuquerque, Ananda Karoline Camelo De
Abstract

<jats:title>Abstract</jats:title><jats:p>Acrylonitrile‐EPDM‐styrene (AES) was applied as an impact modifier for poly(lactic acid) (PLA), and the combined effect of dicumyl peroxide (DCP) crosslinking and annealing heat treatment was investigated. Torque rheometry, melt flow index (MFI), mechanical properties (impact, tensile, and Shore D hardness), X‐ray diffraction (XRD), infrared spectroscopy (FTIR), heat deflection temperature (HDT), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) were investigated. There was a considerable torque increment and fluidity drop in the PLA/AES/DCP blends caused by the crosslinking process and the formation of PLA‐g‐AES. Consequently, the impact strength and elongation at break properties improved. As an engineering terpolymer, AES was decisive in maintaining high elastic modulus, Shore D hardness, and HDT values. The PLA/AES/DCP (0.8 phr) composition leaned towards a synergism of mechanical properties, gaining 505.6% and 264.8% in impact strength and elongation at break, respectively, compared to neat PLA. FTIR and XRD analysis revealed high crystallinity, with samples presenting large crystals. The higher crystallinity had a deleterious effect on the mechanical properties of the PLA/AES/DCP blends. However, there was a marked improvement in HDT and higher toughness compared to PLA. The results before and after annealing the PLA/AES/DCP (0.8 phr) blend are promising for constructing new semi‐biodegradable materials for additive manufacturing.</jats:p>

Topics
  • scanning electron microscopy
  • x-ray diffraction
  • melt
  • strength
  • hardness
  • differential scanning calorimetry
  • annealing
  • additive manufacturing
  • crystallinity
  • atomic emission spectroscopy
  • Auger electron spectroscopy
  • infrared spectroscopy
  • rheometry