Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Judic, Marine

  • Google
  • 1
  • 3
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023One‐step elaboration of flexible transparent conductive electrodes from silver nanowires/polymer nanocomposites3citations

Places of action

Chart of shared publication
Lonjon, Antoine
1 / 32 shared
Dantras, Eric
1 / 85 shared
Lacabanne, Colette
1 / 74 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Lonjon, Antoine
  • Dantras, Eric
  • Lacabanne, Colette
OrganizationsLocationPeople

article

One‐step elaboration of flexible transparent conductive electrodes from silver nanowires/polymer nanocomposites

  • Judic, Marine
  • Lonjon, Antoine
  • Dantras, Eric
  • Lacabanne, Colette
Abstract

<jats:title>Abstract</jats:title><jats:p>A new simplified low temperature deposition method to manufacture flexible transparent conductive electrodes (FTCE) based on conductive polymer composite filled with silver nanowires (AgNWs) was investigated. Polyurethane/AgNWs composite was deposed on a poly(ethylene terephthalate) substrate as a conductive paint in a thin layer lower than 2 μm. The high aspect ratio nanowires influence on the electrical behavior is followed with surface resistivity and optical transparency experiments. The best compromise was obtained with a conductive layer filled with 2.84 vol.% of AgNWs; it exhibits a surface resistivity of 143 Ω/sq with 73% in transmittance. These transparent conductive composites processing in one step with good touching manipulation resistance demonstrate the real interest for this kind of FTCEs technology without indium tin oxide.</jats:p>

Topics
  • Deposition
  • nanocomposite
  • impedance spectroscopy
  • surface
  • polymer
  • silver
  • experiment
  • tin
  • Indium
  • surface resistivity