Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vayyaprontavida Kaliyathan, Abitha

  • Google
  • 2
  • 7
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Physical property characterizations of natural rubber nanocomposites through experimental techniques, models and <scp>CRR</scp> concept1citations
  • 2021Shape Memory Materials from Rubbers18citations

Places of action

Chart of shared publication
Delpouve, Nicolas
1 / 22 shared
S., Sisanth K.
1 / 1 shared
Saiter-Fourcin, Allisson
1 / 7 shared
Patanair, Bindu
1 / 3 shared
Thomas, Sabu
1 / 84 shared
Reghunadhan, Arunima
1 / 1 shared
Strankowski, Michał
1 / 7 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Delpouve, Nicolas
  • S., Sisanth K.
  • Saiter-Fourcin, Allisson
  • Patanair, Bindu
  • Thomas, Sabu
  • Reghunadhan, Arunima
  • Strankowski, Michał
OrganizationsLocationPeople

article

Physical property characterizations of natural rubber nanocomposites through experimental techniques, models and <scp>CRR</scp> concept

  • Delpouve, Nicolas
  • Vayyaprontavida Kaliyathan, Abitha
  • S., Sisanth K.
  • Saiter-Fourcin, Allisson
  • Patanair, Bindu
Abstract

<jats:title>Abstract</jats:title><jats:p>In this research, the combinations of silica (SiO<jats:sub>2</jats:sub>), with either graphite (GR) or graphene oxide (GO), are studied as hybrid reinforcements of natural rubber (NR). Whereas individual improvements of rigidity, strength or ductility can be obtained depending on the composition, a synergistic reinforcement is specifically evidenced after addition of GO/SiO<jats:sub>2</jats:sub> with a 3:1 ratio. For this formulation, both strength and modulus drastically increase while keeping the strain at break at a decent level. From the confrontation of all tensile tests results with theoretical reinforcement models, a good correlation between the experimental data and the Guth Gold model is observed, which reveals that the mechanical properties should essentially be governed by the filler/matrix interactions. This assumption has been discussed through the cooperative rearranging region (CRR) concept, by analyzing the calorimetric response of the nanocomposites at the glass transition. Not only the 3:1 GO/SiO<jats:sub>2</jats:sub> composition is the only one for which the glass transition clearly shifts to higher temperatures, its CRR average size is also the lowest in comparison with reference NR. This result, interpreted as the signature of the most efficient intercalation of the fillers, matches well with the steep strain hardening recorded for this nanocomposite.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • glass
  • glass
  • gold
  • strength
  • ductility
  • rubber