Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Freitas, João Vitor Gomes De

  • Google
  • 1
  • 3
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Enhancement of sustainable fused deposition modeling <scp>3D‐printing</scp> with agave Americana fiber‐reinforced poly(lactic) acid biofilaments4citations

Places of action

Chart of shared publication
Neto, Thalita Da Silva
1 / 1 shared
Barbosa, Rennan F. S.
1 / 1 shared
Mulinari, Daniella
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Neto, Thalita Da Silva
  • Barbosa, Rennan F. S.
  • Mulinari, Daniella
OrganizationsLocationPeople

article

Enhancement of sustainable fused deposition modeling <scp>3D‐printing</scp> with agave Americana fiber‐reinforced poly(lactic) acid biofilaments

  • Neto, Thalita Da Silva
  • Freitas, João Vitor Gomes De
  • Barbosa, Rennan F. S.
  • Mulinari, Daniella
Abstract

<jats:title>Abstract</jats:title><jats:p>Additive manufacturing (AM) of eco‐friendly biocomposites has been growing recently to obtain green fillers capable of reducing bioplastic costs without compromising the material processability and performance. This paper aims to study the effect of using different Agave America fiber volume ratios on the morphological, chemical, and thermal properties, contact angle, and hardness of poly(lactic) acid (PLA) filament for 3D printing. Sustainable biofilaments of PLA filled with 10 and 5 wt% of Agave Americana fiber were prepared in a thermokinetic mixer and extruded in a machine, and then used to print testing samples using fused deposition modeling (FDM) 3D printer. Biofilaments were characterized using scanning electron microscopy (SEM), thermogravimetry (TGA), differential scanning calorimetry (DSC), and Fourier‐transform infrared spectroscopy (FTIR) techniques. The addition of fiber did not significantly influence the biofilament's diameter and density compared to pure PLA. On the other hand, it influenced printed biofilaments' thermal stability and morphological characteristics. The biocomposites developed have shown enhancement in their shore hardness. Thus, the use of Agave Americana fiber reinforced in a PLA matrix did not compromise its thermal properties, nor its processability and printability, which could open the possibility of future research with a biocomposite with higher fiber content and an environmentally friendly alternative over traditional filler materials.</jats:p>

Topics
  • Deposition
  • density
  • scanning electron microscopy
  • thermogravimetry
  • differential scanning calorimetry
  • additive manufacturing
  • infrared spectroscopy
  • shore hardness