Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Arab, Kosar

  • Google
  • 1
  • 1
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Nanocomposite proton conducting membranes based on sulfonated polystyrene/imidazole‐2‐acetic acid blend for direct methanol fuel cell application6citations

Places of action

Chart of shared publication
Tohidian, Mahdi
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Tohidian, Mahdi
OrganizationsLocationPeople

article

Nanocomposite proton conducting membranes based on sulfonated polystyrene/imidazole‐2‐acetic acid blend for direct methanol fuel cell application

  • Tohidian, Mahdi
  • Arab, Kosar
Abstract

<jats:title>Abstract</jats:title><jats:p>Nanocomposite polyelectrolyte membranes based on sulfonated polystyrene (SPS) /imidazole‐2‐acetic acid (Im) blend (SPSIm), incorporated with halloysite nanotubes (HNTs) were studied for direct methanol fuel cell (DMFC) applications. Firstly, PS was sulfonated at various degrees of sulfonation (DS), and the optimum DS was selected based on hydrolytic stability. Then, SPS was blended with Im as new proton conducting sites. In addition to increasing proton conductivity, methanol permeability decreased due to the attractive interaction between Im and SO<jats:sub>3</jats:sub>H groups in SPS. In the next step, to introduce tortuous diffusion pathways and hence decrease the methanol crossover, halloysite nanotubes were incorporated into the SPSIm matrix. The results show that the methanol permeability of the membrane incorporated with 1 wt% HNT (SPSIm/HNT) was around 0.527 × 10<jats:sup>−7</jats:sup> cm<jats:sup>2</jats:sup> s<jats:sup>−1</jats:sup>, which showed a significant decrease compared to SPS, causing an improvement in the membrane selectivity parameter in comparison to pristine SPS membrane. Furthermore, the thermal properties, ion exchange capacity (IEC), water uptake behavior, and performance of the membranes were evaluated. Based on the results, owing to the reduced methanol permeability, acceptable power density, ease of preparation, as well as low cost, SPSIm/HNT could be considered for DMFC applications.</jats:p>

Topics
  • nanocomposite
  • density
  • nanotube
  • permeability
  • ion-exclusion chromatography
  • ion-exchange chromatography