People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salmas, Constantinos
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2023Atomic layer deposition of <scp>ZnO</scp> on <scp>PLA</scp>/<scp>TiO<sub>2</sub></scp> bionanocomposites: Evaluation of surface chemistry and physical properties toward food packaging applicationscitations
- 2022Microwave Synthesis, Characterization and Perspectives of Wood Pencil-Derived Carboncitations
Places of action
Organizations | Location | People |
---|
article
Atomic layer deposition of <scp>ZnO</scp> on <scp>PLA</scp>/<scp>TiO<sub>2</sub></scp> bionanocomposites: Evaluation of surface chemistry and physical properties toward food packaging applications
Abstract
<jats:title>Abstract</jats:title><jats:p>The impact of titanium dioxide (TiO<jats:sub>2</jats:sub>) on the physical properties of poly(lactic acid) (PLA) is explored, along with the combined effect of Atomic Layer Deposition of zinc oxide (ZnO) on the nanocomposite films' surface. PLA/TiO<jats:sub>2</jats:sub> bionanocomposites are prepared via melt‐extrusion and characterized in terms of their morphological, thermal, and mechanical properties. Homogeneous dispersion of the filler offers enhanced mechanical performance for samples up to 5 wt% in TiO<jats:sub>2</jats:sub> content. Thermal stability of PLA is also slightly improved upon increasing TiO<jats:sub>2</jats:sub> content. This work also demonstrates that surface modification of PLA/TiO<jats:sub>2</jats:sub> films employing Atomic Layer Deposition of zinc oxide enhances hydrophobicity, while antimicrobial activity, although mild, appears enhanced for coated samples. Water vapor permeability is retained in both coated and uncoated nanocomposites. Surface characterization of the studied specimens, by x‐ray photoelectron spectroscopy and scanning electron microscopy, reveals subsurface diffusion and reaction of the depositing compounds within PLA, leading to a different surface chemistry involving Zn(OH)<jats:sub>2</jats:sub>. This study gives valuable insights on the parameters affecting the atomic layer deposition of inorganic coatings on a polymeric substrate in the presence of nanoinclusions and, therefore, on the physical properties of the coated films, providing the pathway for their exploitation in food packaging applications.</jats:p>