Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Morávková, Zuzana

  • Google
  • 1
  • 6
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Fluorescent poly[<scp><i>N</i></scp>‐(<scp>2‐hydroxypropyl</scp>) methacrylamide] nanogel by dispersion polymerization as a contrast agent for <scp>live‐cell</scp> imaging2citations

Places of action

Chart of shared publication
Pavlova, Ewa
1 / 8 shared
Janoušková, Olga
1 / 3 shared
Šálek, Petr
1 / 1 shared
Zbořilová, Daniela
1 / 1 shared
Kočková, Olga
1 / 2 shared
Konefał, Rafał
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Pavlova, Ewa
  • Janoušková, Olga
  • Šálek, Petr
  • Zbořilová, Daniela
  • Kočková, Olga
  • Konefał, Rafał
OrganizationsLocationPeople

article

Fluorescent poly[<scp><i>N</i></scp>‐(<scp>2‐hydroxypropyl</scp>) methacrylamide] nanogel by dispersion polymerization as a contrast agent for <scp>live‐cell</scp> imaging

  • Pavlova, Ewa
  • Janoušková, Olga
  • Šálek, Petr
  • Zbořilová, Daniela
  • Kočková, Olga
  • Konefał, Rafał
  • Morávková, Zuzana
Abstract

<jats:title>Abstract</jats:title><jats:p>Here, we report a novel dispersion polymerization for the preparation of cross‐linked poly[<jats:italic>N</jats:italic>‐(2‐hydroxypropyl) methacrylamide] (PHPMA)‐based nanogels in water/2‐methoxyethanol mixture (H<jats:sub>2</jats:sub>O/MetCel), initiated with potassium persulfate (KPS), and stabilized with poly(vinyl alcohol) 25/140 (PVA) and sodium dodecyl sulfate (SDS). Obtained nanogels were characterized using transmission (TEM) and cryogenic transmission electron microscopy (cryo‐TEM), dynamic light scattering (DLS), asymmetric flow field‐flow fractionation (A4F), nuclear magnetic resonance spectroscopy (NMR), and Raman spectroscopy methods in terms of size, particle size distribution, morphology, and structure. <jats:italic>N</jats:italic>‐(2‐hydroxypropyl) methacrylamide (HPMA) was copolymerized with 20 wt% ethylene dimethacrylate (EDMA) resulting in 138 nm poly[<jats:italic>N</jats:italic>‐(2‐hydroxypropyl) methacrylamide‐<jats:italic>co</jats:italic>‐ethylene dimethacrylate] (PHPMA‐EDMA) nanogel dispersion with irregular shape and core‐shell type structure. Next, we copolymerized HPMA with 20 wt% EDMA and 10 wt% propargyl methacrylate (PMA) to incorporate reactive functionality into the final core‐shell type 120 nm poly[<jats:italic>N</jats:italic>‐(2‐hydroxypropyl) methacrylamide‐<jats:italic>co</jats:italic>‐ethylene dimethacrylate‐<jats:italic>co</jats:italic>‐propargyl methacrylate] (PHPMA‐EDMA‐PMA) nanogel dispersion. Then, the biocompatibility of PHPMA‐EDMA‐PMA nanogel was proved using rat mesenchymal stem cells (rMSC), and human foreskin fibroblasts (BJ). PHPMA‐EDMA‐PMA nanogel was fluorescently labeled with sulfo‐cyanine3 azide resulting in 131 nm nanogel. We performed in vitro uptake studies with fluorescently labeled PHPMA‐EDMA‐PMA nanogel using rMSC showing that the fluorescently labeled PHPMA‐EDMA‐PMA nanogel was well‐distributed in the cytosol and taken up into lysosomes.</jats:p>

Topics
  • morphology
  • dispersion
  • reactive
  • Sodium
  • Potassium
  • transmission electron microscopy
  • Nuclear Magnetic Resonance spectroscopy
  • Raman spectroscopy
  • alcohol
  • biocompatibility
  • dynamic light scattering
  • fractionation