Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Meredith, Carson

  • Google
  • 1
  • 6
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Tricomponent polymer aerogels containing cellulose nanocrystals and chitin nanofibers and their use in aerogel/hydrogel hybrids as fibrocartilage replacements3citations

Places of action

Chart of shared publication
Shofner, Meisha
1 / 6 shared
Arroyo, Nicole B.
1 / 1 shared
Shial, Keya
1 / 1 shared
Satam, Chinmay
1 / 1 shared
Verma, Prateek
1 / 2 shared
Irvin, Cameron
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Shofner, Meisha
  • Arroyo, Nicole B.
  • Shial, Keya
  • Satam, Chinmay
  • Verma, Prateek
  • Irvin, Cameron
OrganizationsLocationPeople

article

Tricomponent polymer aerogels containing cellulose nanocrystals and chitin nanofibers and their use in aerogel/hydrogel hybrids as fibrocartilage replacements

  • Meredith, Carson
  • Shofner, Meisha
  • Arroyo, Nicole B.
  • Shial, Keya
  • Satam, Chinmay
  • Verma, Prateek
  • Irvin, Cameron
Abstract

<jats:title>Abstract</jats:title><jats:p>Considering the design of structures and materials for use as replacements for biological structures, polymer nanocomposites are desirable materials of construction since they have a large design space, allowing property customization. Biobased nanofibers are particularly suited for these applications since they have high specific mechanical properties and cytocompatibility. Motivated by these attributes, this work examines nanocomposite aerogels and an aerogel/hydrogel hybrid structure designed to mimic an intervertebral disc (IVD), with the aerogel and hydrogel serving as analogs for the annulus fibrosus and the nucleus pulposus, respectively. The aerogels and aerogel/hydrogel hybrid structure contain a mixture of biobased nanofibers, cellulose nanocrystals (CNCs) and chitin nanofibers (ChNFs), and a polyvinyl alcohol (PVA) matrix. Characterization of the structure and properties shows that the nanocomposite aerogels containing CNC/ChNF mixtures have larger pores and decreased mechanical properties as compared to aerogels containing only CNCs or only ChNFs. Building on these results, a hybrid comprised of a CNC/PVA aerogel and a CNC/ChNF/PVA hydrogel is constructed with mechanical properties similar to natural IVDs, providing initial validation of the hybrid concept for IVD replacements and pathways to customization through changing material composition in the aerogel and hydrogel and changing the aerogel and hydrogel fractions in the hybrid structure.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • pore
  • polymer
  • cellulose
  • alcohol