Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lach, Ralf

  • Google
  • 3
  • 17
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Effect of electron beam irradiation on thermal stability and crystallization behavior of flexible copolyester/multiwalled carbon nanotubes nanocomposites1citations
  • 2023Influence of wheat stalk nanocellulose on structural, mechanical, thermal, surface and degradation properties of composites with poly(butylene adipate-co-terephthalate)6citations
  • 2022Electrically conductive and piezoresistive polymer nanocomposites using multiwalled carbon nanotubes in a flexible copolyester: Spectroscopic, morphological, mechanical and electrical propertiescitations

Places of action

Chart of shared publication
Müller, Michael Thomas
1 / 15 shared
Krause, Beate
2 / 89 shared
Pionteck, Jürgen
2 / 34 shared
Dhakal, Kedar Nath
2 / 3 shared
Grellmann, Wolfgang
3 / 3 shared
Adhikari, Rameshwar Prasad
1 / 1 shared
Bhasney, Siddharth Mohan
1 / 2 shared
Henning, Sven
1 / 5 shared
Saiter, Jean Marc
1 / 1 shared
Katiyar, Vimal
1 / 6 shared
Giri, Jyoti Aswin
1 / 1 shared
Khanal, Santosh
1 / 1 shared
Wießner, Sven
1 / 16 shared
Le, Hai Hong
1 / 1 shared
Heinrich, Gert
1 / 28 shared
Adhikari, Rameshwar
1 / 7 shared
Das, Amit
1 / 18 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Müller, Michael Thomas
  • Krause, Beate
  • Pionteck, Jürgen
  • Dhakal, Kedar Nath
  • Grellmann, Wolfgang
  • Adhikari, Rameshwar Prasad
  • Bhasney, Siddharth Mohan
  • Henning, Sven
  • Saiter, Jean Marc
  • Katiyar, Vimal
  • Giri, Jyoti Aswin
  • Khanal, Santosh
  • Wießner, Sven
  • Le, Hai Hong
  • Heinrich, Gert
  • Adhikari, Rameshwar
  • Das, Amit
OrganizationsLocationPeople

article

Effect of electron beam irradiation on thermal stability and crystallization behavior of flexible copolyester/multiwalled carbon nanotubes nanocomposites

  • Müller, Michael Thomas
  • Krause, Beate
  • Pionteck, Jürgen
  • Dhakal, Kedar Nath
  • Grellmann, Wolfgang
  • Lach, Ralf
Abstract

<jats:title>Abstract</jats:title><jats:p>Poly(butylene adipate<jats:italic>‐co‐</jats:italic>terephthalate) (PBAT), a biodegradable copolyester, was used as the polymer matrix to prepare nanocomposites with multiwalled carbon nanotubes (MWCNT) by melt‐mixing followed by hot‐pressing. The PBAT/MWCNT nanocomposites were exposed to electron beam (EB) irradiation, and thermal stability, melting and crystallization behavior of irradiated and unirradiated nanocomposites were comparatively investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. TGA results reveal increased thermal stability (up to 17°C) and maximum degradation temperature (<jats:italic>T</jats:italic><jats:sub>max</jats:sub>) (up to 15°C) of PBAT/MWCNT nanocomposites, attributed to the high thermal stability of MWCNT and good MWCNT–PBAT interfacial interactions. However, the activation energy for thermal degradation (<jats:italic>E</jats:italic><jats:sub>a</jats:sub>) decreased with the presence of MWCNT in comparison to neat PBAT regardless of the MWCNT concentration. Both the thermal stability and <jats:italic>T</jats:italic><jats:sub>max</jats:sub> of irradiated nanocomposites decreased by 3°C despite the crosslinking which can be attributed to successive minor irradiation‐induced polymer degradation, while <jats:italic>E</jats:italic><jats:sub>a</jats:sub> remained unchanged. Declined melting temperature (<jats:italic>T</jats:italic><jats:sub>m</jats:sub>), enthalpy of crystallization, enthalpy of melting and crystallinity of nanocomposites with the presence of MWCNT suggest the formation of less perfect crystals. Meanwhile, their increased glass transition temperature (<jats:italic>T</jats:italic><jats:sub>g</jats:sub>) and crystallization temperature (<jats:italic>T</jats:italic><jats:sub>c</jats:sub>) are due to the increased rigidity of PBAT chains and a reduced crystallization process in the presence of MWCNT, respectively. Similarly, reduced crystallinity and values of <jats:italic>T</jats:italic><jats:sub>m</jats:sub> and <jats:italic>T</jats:italic><jats:sub>c</jats:sub> of EB‐irradiated nanocomposites by 4.1%, 9.6%, and 7.5%, respectively, signifying the presence of PBAT‐crosslinks resulting in crystal defects.</jats:p>

Topics
  • nanocomposite
  • polymer
  • Carbon
  • nanotube
  • melt
  • glass
  • glass
  • laser emission spectroscopy
  • thermogravimetry
  • glass transition temperature
  • defect
  • differential scanning calorimetry
  • activation
  • interfacial
  • crystallization
  • crystallinity
  • melting temperature
  • crystallization temperature
  • degradation temperature