Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Navarrete, Freddy

  • Google
  • 1
  • 8
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Improving <scp>glass‐fiber</scp> epoxy composites via interlayer toughening with polyacrylonitrile/multiwalled carbon nanotubes electrospun fibers6citations

Places of action

Chart of shared publication
Narváez-Muñoz, Christian
1 / 1 shared
Segura, Luis Javier
1 / 2 shared
Ryzhakov, Pavel
1 / 4 shared
Zamora-Ledezma, Camilo
1 / 12 shared
Canocrespo, Rafael
1 / 1 shared
Ponsprats, Jordi
1 / 1 shared
Mena, Carlos
1 / 2 shared
Morales-Florez, Víctor
1 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Narváez-Muñoz, Christian
  • Segura, Luis Javier
  • Ryzhakov, Pavel
  • Zamora-Ledezma, Camilo
  • Canocrespo, Rafael
  • Ponsprats, Jordi
  • Mena, Carlos
  • Morales-Florez, Víctor
OrganizationsLocationPeople

article

Improving <scp>glass‐fiber</scp> epoxy composites via interlayer toughening with polyacrylonitrile/multiwalled carbon nanotubes electrospun fibers

  • Narváez-Muñoz, Christian
  • Segura, Luis Javier
  • Ryzhakov, Pavel
  • Navarrete, Freddy
  • Zamora-Ledezma, Camilo
  • Canocrespo, Rafael
  • Ponsprats, Jordi
  • Mena, Carlos
  • Morales-Florez, Víctor
Abstract

<jats:title>Abstract</jats:title><jats:p>The development of innovative engineered epoxy composites aiming to manufacture cost‐efficient materials with reduced weight and enhanced physical properties remains as a current industrial challenge. In this work we report an original procedure for manufacturing glass‐fiber epoxy reinforced nanocomposites (GFECs) by employing electrospun fiber‐mats as a reinforcing phase. These fibers have been produced from polyacrylonitrile and multiwalled carbon nanotubes solutions. Optimal protocols are designed by combining Taguchi method with the morphological, structural and mechanical properties obtained by scanning electron microscopy, profilometry and tensile tests. It is demonstrated that GFECs fabricated using GF800 glass fiber show an improvement/enhancement of the mechanical properties with a fracture strain up to 500 MPa (around 20% higher than the non‐reinforced epoxy composite counterpart). It is also shown that GFECs fabricated using GF3M glass fiber exhibited a reduction of the roughness up to 56%, which corresponds with a roughness improvement from N8 to N7 following the guidelines provided by the ISO 1302. These results suggest that this type of nanocomposites would be suitable to be used in the aeronautics and automotive industries.</jats:p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • Carbon
  • phase
  • scanning electron microscopy
  • nanotube
  • glass
  • glass
  • profilometry