Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hassine, Tarek

  • Google
  • 4
  • 11
  • 31

Processes and Engineering in Mechanics and Materials

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Effect of processing conditions on morphology and mechanical damage in glass‐reinforced polypropylene composite4citations
  • 2022Modeling of viscoelastic behavior of a shape memory polymer blend7citations
  • 2021Modeling of viscoelastic behavior of a shape memory polymer blend7citations
  • 2018Finite element analysis of hydrogen effects on superelastic NiTi shape memory alloys: Orthodontic application13citations

Places of action

Chart of shared publication
Nouira, Samia
1 / 7 shared
Benfriha, Khaled
1 / 17 shared
Peixinho, Jorge
1 / 7 shared
Shirinbayan, Mohammadali
1 / 56 shared
Fitoussi, Joseph
1 / 56 shared
Gamaoun, Fehmi
3 / 13 shared
Tcharkhtchi, Abbas
2 / 74 shared
Ben Abdallah, Abir
2 / 6 shared
Kallel, Achraf
2 / 17 shared
Letaief, Wissem Elkhal
1 / 1 shared
Fathallah, Aroua
1 / 1 shared
Chart of publication period
2024
2022
2021
2018

Co-Authors (by relevance)

  • Nouira, Samia
  • Benfriha, Khaled
  • Peixinho, Jorge
  • Shirinbayan, Mohammadali
  • Fitoussi, Joseph
  • Gamaoun, Fehmi
  • Tcharkhtchi, Abbas
  • Ben Abdallah, Abir
  • Kallel, Achraf
  • Letaief, Wissem Elkhal
  • Fathallah, Aroua
OrganizationsLocationPeople

article

Modeling of viscoelastic behavior of a shape memory polymer blend

  • Gamaoun, Fehmi
  • Tcharkhtchi, Abbas
  • Ben Abdallah, Abir
  • Hassine, Tarek
  • Kallel, Achraf
Abstract

<jats:title>Abstract</jats:title><jats:p>Shape memory effect (SME) of polymers is a property that concerns both, macroscopic and microscopic changes. The variation of internal polymer properties such, as molecular weight (<jats:italic>M</jats:italic><jats:sub>w</jats:sub>), rigidity, and viscoelasticity could alter its SME. In this study, a bi‐parabolic model with six parameters is used to describe the viscoelastic behavior of a shape memory polymer (SMP) blend (40% poly(caprolactone), PCL/60% Styrene–Butadiene–Styrene) with different PCL <jats:italic>M</jats:italic><jats:sub>w</jats:sub>. These parameters are determined using the Cole–Cole method. Modeling curves (<jats:italic>E</jats:italic>″ = <jats:italic>f</jats:italic> (<jats:italic>E</jats:italic>′)) will be then compared to experimental data from dynamical mechanical analysis (DMA) tests. It is shown that the bi‐parabolic model predicts well the behavior of the SMP mixture for different <jats:italic>M</jats:italic><jats:sub>w</jats:sub> of PCL. Afterwards, the evolution of the model parameters with the <jats:italic>M</jats:italic><jats:sub>w</jats:sub> of PCL is investigated. It is revealed that, when <jats:italic>M</jats:italic><jats:sub>w</jats:sub> of PCL drops, the relaxation modulus <jats:italic>E</jats:italic><jats:sub>0</jats:sub> increases. This result proves that the rigidity of the SMP blend rises with <jats:italic>M</jats:italic><jats:sub>w</jats:sub> declines.</jats:p>

Topics
  • impedance spectroscopy
  • viscoelasticity
  • molecular weight
  • polymer blend