Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marín, Daniel

  • Google
  • 3
  • 6
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023The Evolution and Future Trends of Unsaturated Polyester Biocomposites8citations
  • 2023Potential of natural fiber in unsaturated polyester biocomposite application2citations
  • 2021Phase distribution changes of neat unsaturated polyester resin and their effects on both thermal stability and dynamic-mechanical properties9citations

Places of action

Chart of shared publication
Tercjak, Agnieszka
2 / 11 shared
Builes, Daniel H.
3 / 3 shared
Zuluaga, Robin
1 / 18 shared
Herazo, Cristina Isabel Castro
2 / 15 shared
Rojo, Piedad Felisinda Gañán
3 / 34 shared
Barajas, Jaime
1 / 1 shared
Chart of publication period
2023
2021

Co-Authors (by relevance)

  • Tercjak, Agnieszka
  • Builes, Daniel H.
  • Zuluaga, Robin
  • Herazo, Cristina Isabel Castro
  • Rojo, Piedad Felisinda Gañán
  • Barajas, Jaime
OrganizationsLocationPeople

article

Phase distribution changes of neat unsaturated polyester resin and their effects on both thermal stability and dynamic-mechanical properties

  • Tercjak, Agnieszka
  • Builes, Daniel H.
  • Herazo, Cristina Isabel Castro
  • Marín, Daniel
  • Rojo, Piedad Felisinda Gañán
Abstract

<p>A relationship between phase distribution of a commercial unsaturated polyester resin (UPR) and both thermal stability and dynamical mechanical properties, measured by thermogravimetric analysis and dynamic-mechanical analysis respectively, is observed. Changes in phase distributions are achieved varying UPR components miscibility by means of temperature. Morphologies of the internal surfaces are analyzed by atomic force microscopy showing that more homogeneous nanostructures with smaller nodules result in the increase of the storage modulus and glass transition temperature of the thermosetting UPR. Tan δ peaks show that the phase rich in UP and the phase rich in polystyrene tend to decrease their differences at higher curing temperatures. Changes in the curing mechanism and kinetics with curing temperature are verified by differential scanning calorimetry. A theoretical explanation of archived morphology is proposed using interaction parameter between UP and styrene showing that higher temperatures increased their miscibility.</p>

Topics
  • impedance spectroscopy
  • surface
  • phase
  • atomic force microscopy
  • glass
  • glass
  • thermogravimetry
  • glass transition temperature
  • differential scanning calorimetry
  • resin
  • curing