Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zahabi, Saleh Salehi

  • Google
  • 1
  • 6
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Microfibers nanocomposite based on polyacrylonitrile fibers/bismuth oxide nanoparticles as X‐ray shielding material18citations

Places of action

Chart of shared publication
Samadian, Hadi
1 / 7 shared
Arkan, Elham
1 / 1 shared
Hosseini, Mehdi
1 / 3 shared
Rashidi, Mehdi
1 / 1 shared
Jaymand, Mehdi
1 / 1 shared
Bijari, Salar
1 / 1 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Samadian, Hadi
  • Arkan, Elham
  • Hosseini, Mehdi
  • Rashidi, Mehdi
  • Jaymand, Mehdi
  • Bijari, Salar
OrganizationsLocationPeople

article

Microfibers nanocomposite based on polyacrylonitrile fibers/bismuth oxide nanoparticles as X‐ray shielding material

  • Samadian, Hadi
  • Arkan, Elham
  • Zahabi, Saleh Salehi
  • Hosseini, Mehdi
  • Rashidi, Mehdi
  • Jaymand, Mehdi
  • Bijari, Salar
Abstract

<jats:title>Abstract</jats:title><jats:p>The main focus of the current study was to fabricate fibrous nanocomposite based on polyacrylonitrile (PAN) fibers containing Bi<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> NPs as the X‐ray shielding material. Bi<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> NPs were synthesized based on the solid dispersion evaporation method and dispersed into PAN polymer solution with different weight concentrations. The electrospinning technique was used to fabricate nanocomposite. The morphology, surface functional group, wettability, elemental analysis, and X‐ray shielding efficacy of the fabricated nanocomposite were thoroughly evaluated. The dimeter of the fibrous nanocomposites containing 10, 20, and 30 wt% Bi<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> NPs were 1.33 ± 0.08, 1.01 ± 0.11, and 1.69 ± 0.32 μm, respectively. EDX elemental analysis showed that NPs were uniformly distributed into/onto the fibers. The X‐ray shielding studies showed that the prepared nanocomposites effectively attenuate the intensity of the X‐ray. The entrance surface dose for the negative control was 24.10 ± 1.71 mSv and the application of the nanocomposites significantly reduced the entrance surface dose. The results showed NPs concentration‐dependent CT number shift as the indication of X‐ray protection and the highest value was obtained by 30 wt% NPs. The obtained results implied that the fabricated nanocomposites effectively attenuate the radiation and they could be applied as the X‐ray shielding materials.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • dispersion
  • surface
  • polymer
  • Energy-dispersive X-ray spectroscopy
  • evaporation
  • electrospinning
  • elemental analysis
  • Bismuth