Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Barnes, David

  • Google
  • 2
  • 4
  • 6

Queen's University Belfast

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Motion control for uniaxial rotational molding6citations
  • 2017Simulation Of The Rotational Moulding Process Using Discrete Element Methodscitations

Places of action

Chart of shared publication
Adams, Jonathan
2 / 3 shared
Kearns, Mark
1 / 15 shared
Jin, Yan
2 / 10 shared
Butterfield, Joseph
2 / 7 shared
Chart of publication period
2021
2017

Co-Authors (by relevance)

  • Adams, Jonathan
  • Kearns, Mark
  • Jin, Yan
  • Butterfield, Joseph
OrganizationsLocationPeople

article

Motion control for uniaxial rotational molding

  • Adams, Jonathan
  • Barnes, David
  • Kearns, Mark
  • Jin, Yan
  • Butterfield, Joseph
Abstract

Motion control parameters of rotational molding can affect process efficiency and product quality. Different motion control schemes will lead to varied powder flow regimes exhibiting different levels of mixing and temperature uniformity. The change in nature of powder flow during a molding cycle suggests that varying the rotational speed could improve the powder mixing and temperature uniformity, therefore potentially reducing processing time and energy consumption. Experiments completed investigating powder flow under uniaxial rotation show that savings of up to 2.5% of the heating cycle time can be achieved. This validates the hypothesis that altering the rotational speed to maintain the ideal powder flow throughout the heating cycle can be utilized to reduce the time taken for all the polymer powder to adhere to the mold wall. The effect of rotational speed on wall thickness uniformity and impact strength were investigated and discussed. Results show a strong influence of rotational speed (and powder flow) on the wall thickness uniformity of the moldings with wall thickness uniformity deviations of up to 50% found (within the 2–35 RPM speed range tested).).<br/>

Topics
  • polymer
  • experiment
  • strength
  • rotational molding