Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Eder, Gabriele Christine

  • Google
  • 1
  • 6
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Increased reliability of modified polyolefin backsheet over commonly used polyester backsheets for crystalline PV modules29citations

Places of action

Chart of shared publication
Pinter, Gerald
1 / 67 shared
Oreski, Gernot
1 / 7 shared
Erceg, Matko
1 / 1 shared
Edler, Michael
1 / 1 shared
Hirschl, Christina
1 / 1 shared
Omazic, Antonia
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Pinter, Gerald
  • Oreski, Gernot
  • Erceg, Matko
  • Edler, Michael
  • Hirschl, Christina
  • Omazic, Antonia
OrganizationsLocationPeople

article

Increased reliability of modified polyolefin backsheet over commonly used polyester backsheets for crystalline PV modules

  • Pinter, Gerald
  • Oreski, Gernot
  • Erceg, Matko
  • Edler, Michael
  • Eder, Gabriele Christine
  • Hirschl, Christina
  • Omazic, Antonia
Abstract

<p>The weathering stability of polymeric backsheets is very important for the reliability of photovoltaic (PV) modules. In addition to reliability, cost reduction and sustainability are upcoming challenges the PV backsheet industry is facing with. The most commonly used material for PV backsheets is poly(ethylene-terephthalate)-PET. However, PET is in general very sensitive to hydrolysis, which leads to chain scission and causes embrittlement, cracking, delamination, and dimensional instability of the backsheet. Compared to that newly developed modified polyolefin backsheets have favorable selective permeation properties and high mechanical flexibility, which could be key properties for backsheets in terms of higher PV module reliability. In this work, the weathering stability of PET/fluoropolymer backsheet and an alternative coextruded polyolefin-backsheet was investigated in terms of thermal and mechanical stability. Both materials were artificially aged and the changes caused by aging were investigated. The polyester-based backsheet showed embrittlement and reduced elongation at break for 70%. The polyolefin-based backsheet retained its mechanical flexibility even after 2000 h of aging under damp-heat conditions, with no significant physical or chemical aging processes occurring. The comparison of the results of both backsheets suggests that the polyolefin backsheet is a promising candidate for the reduction of cracks and delamination in the field.</p>

Topics
  • impedance spectroscopy
  • crack
  • aging
  • aging