People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Latko-Durałek, Paulina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Using 3D printing technology to monitor damage in GFRPs
- 2024Electrically conductive and flexible filaments of hot melt adhesive for the fused filament fabrication process
- 2023Effect of carbon nanoparticles on selected properties of hot melt adhesives
- 2023Experimental analysis of the influence of thermoplastic veils doped with nanofillers on the thermal properties of fibre-reinforced composites
- 2023Selected properties of electrically conductive hot melt ethylene-vinyl acetate adhesives
- 2022Electrically Conductive Adhesive Based on Thermoplastic Hot Melt Copolyamide and Multi-Walled Carbon Nanotubescitations
- 2021Fibers of Thermoplastic Copolyamides with Carbon Nanotubes for Electromagnetic Shielding Applicationscitations
- 2020Characterization of thermoplastic nonwovens of copolyamide hot melt adhesives filled with carbon nanotubes produced by melt-blowing methodcitations
- 2020Effect of the areal weight of CNT-doped veils on CFRP electrical propertiescitations
- 2019Carbon Fiber Reinforced Polymers modified with thermoplastic nonwovens containing multi-walled carbon nanotubescitations
- 2019Thermal, Rheological and Mechanical Properties of PETG/rPETG Blendscitations
- 2018Nonwovens fabrics with carbon nanotubes used as a interleaves in CFRP
- 2018Improvement of CFRP electrical conductivity by applying nano enabled products containing carbon nanotubes
- 2018Comparison of properties of CFRPs containing nonwoven fabrics with carbon nanotubes, fabricated by prepreg and liquid technology
- 2018Mechanical Properties of PETG Fibres and Their Usage in Carbon Fibres/Epoxy Composite Laminatescitations
- 2018Nonwoven fabrics with carbon nanotubes used as interleaves in CFRPcitations
- 2018Processing and characterization of thermoplastic nanocomposite fibers of hot melt copolyamide and carbon nanotubescitations
- 2018Hot-melt adhesives based on co-polyamide and multiwalled carbon nanotubescitations
- 2014Thermoplastic nanocomposites with enhanced electrical conductivity
Places of action
Organizations | Location | People |
---|
article
Hot-melt adhesives based on co-polyamide and multiwalled carbon nanotubes
Abstract
Composites of two hot melt adhesives based on co-polyamides, one high viscosity (coPA_A), the other low viscosity (coPA_B), and multiwalled carbon nanotubes (MWCNTs) were prepared using twin-screw extrusion via dilution of masterbatches. Examination of these composites across the length scales confirmed that the MWCNTs were uniformly dispersed and distributed in the polymer matrices, although some micron size agglomerations were also observed. A rheological percolation was determined from oscillatory rheology measurements at a mass fraction of MWCNTs below 0.01 for coPA_B and, between 0.01 and 0.02 for coPA_A. Significant increases in complex viscosity and storage modulus confirmed the “pseudo-solid” like behavior of the composite materials. Electrical percolation, determined from dielectric spectroscopy was, found to be at 0.03 and 0.01 MWCNT mass fraction for coPA_A and coPA_B based composites, respectively. Addition of MWCNTs resulted in heterogeneous nucleation and altered the crystallization kinetics of both copolymers. Indirect evidence from contact angle measurements and surface energy calculations confirmed that MWCNT addition enhanced the adhesive properties of coPA_B to a level similar to coPA_A.