People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Eceiza, Arantxa
University of the Basque Country
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2022Effect of Cellulose Nanofibers’ Structure and Incorporation Route in Waterborne Polyurethane–Urea Based Nanocomposite Inkscitations
- 2021Cellulose and Graphene Based Polyurethane Nanocomposites for FDM 3D Printing: Filament Properties and Printabilitycitations
- 2020The effect of the carboxylation degree on cellulose nanofibers and waterborne polyurethane/cellulose nanofiber nanocomposites propertiescitations
- 2020Preparation and characterization of composites based on poly(lactic acid)/poly(methyl methacrylate) matrix and sisal fiber bundles: The effect of annealing processcitations
- 2019Thermal stability and water vapor sorption of wheat starch modified with isocyanate functional groups
- 2018Starch/graphene hydrogels via click chemistry with relevant electrical and antibacterial propertiescitations
- 2018Modification of Pea Starch and Dextrin Polymers with Isocyanate Functional Groupscitations
- 2017Modulating the microstructure of waterborne polyurethanes for preparation of environmentally friendly nanocomposites by incorporating cellulose nanocrystalscitations
- 2017Office waste paper as cellulose nanocrystal sourcecitations
- 2016Two different incorporation routes of cellulose nanocrystals in waterborne polyurethane nanocompositescitations
- 2016Cellulose nanocrystals reinforced environmentally-friendly waterborne polyurethane nanocompositescitations
- 2011The role of reactive silicates on the structure/property relationships and cell response evaluation in polyurethane nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
Office waste paper as cellulose nanocrystal source
Abstract
<jats:title>ABSTRACT</jats:title><jats:p>Cellulose nanocrystals (CNC) are isolated from office waste paper using an alkali solution and a subsequent acid hydrolysis process. The Fourier transform infrared spectroscopy and X‐ray diffraction (XRD) results demonstrate that ink and fillers used in the papermaking industry are almost totally removed after alkali treatments. The XRD results show that CNCs obtained after 2 wt % NaOH solution treatment and a subsequent hydrolysis process exhibit only a cellulose I crystalline structure, and the crystallinity index value increases around 42% with respect to initial office waste paper. Nevertheless, CNCs obtained after 7.5 wt % NaOH solution treatment and a subsequent acid hydrolysis process show a mixture of cellulose I and cellulose II polymorphs. The thermal analysis shows that the CNCs obtained after 7.5 wt % NaOH solution treatment and a subsequent acid hydrolysis process are thermally less stable than other samples, suggesting that the cellulose chains could depolymerize into low molecular weight sugar compounds. Even though the atomic force microscopy images confirm the presence of CNCs, the optical images show that some cellulose microfibers still maintain their structure. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. <jats:bold>2017</jats:bold>, <jats:italic>134</jats:italic>, 45257.</jats:p>