People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Al-Malaika, Sahar
Aston University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2021Influence of anti-ageing compounds on rheological properties of bitumencitations
- 2021Effect of processing conditions and catalyst type on the thermal oxidative degradation mechanisms and melt stability of metallocene and Ziegler‐catalyzed ethylene‐1‐hexene copolymerscitations
- 2021New and novel stabilisation approach for radiation-crosslinked Ultrahigh Molecular Weight Polyethylene (XL-UHMWPE) targeted for use in orthopeadic implantscitations
- 2020Photo-stabilization of biopolymers-based nanocomposites with UV-modified layered silicatescitations
- 2017Novel strategic approach for the thermo- and photo-oxidative stabilization of polyolefin/clay nanocompositescitations
- 2017Novel strategic approach for the thermo- and photo- oxidative stabilization of polyolefin/clay nanocompositescitations
- 2017Thermo-oxidative stabilization of poly(lactic acid)-based nanocomposites through the incorporation of clay with in-built antioxidant activitycitations
- 2015Novel organo-modifier for thermally-stable polymer-layered silicate nanocompositescitations
- 2013Influence of processing and clay type on nanostructure and stability of polypropylene-clay nanocompositescitations
- 2011Effect of contact surfaces on the thermal and photoxidation of dehydrated castor oilcitations
- 2010Reactive processing of polymerscitations
- 2009Effect of extrusion and photo-oxidation on polyethylene/clay nanocompositescitations
- 2009Reactive processing of polymers: structural characterization of products by 1H and 13C NMR spectroscopy for glycidyl methacrylate grafting onto EPR in the absence and presence of a reactive comonomercitations
- 2008Special issue of PDS - Based on PDDG meeting, Aston University, September 2007, in honour of Professor Norman Billingham
- 2006Metallocene ethylene-1-octene copolymerscitations
- 2005Polymer degradation and stabilitycitations
- 2004Perspectives in stabilisation of polyolefinscitations
- 2003Oxidative degradation and stabilisation of polymerscitations
Places of action
Organizations | Location | People |
---|
article
Thermo-oxidative stabilization of poly(lactic acid)-based nanocomposites through the incorporation of clay with in-built antioxidant activity
Abstract
<p>In this work, an innovative approach to overcome the issue of the poor thermo-oxidative stability of polymer/clay nanocomposites is proposed. Specifically, biodegradable polylactic acid (PLA)-based nanocomposites, containing organo-modified clay with in-built antioxidant activity, were prepared. Through a two-step chemical protocol, a hindered phenol antioxidant was chemically linked to the ammonium quaternary salt which was then intercalated between the clay platelets [(AO)OM-Mt]. The nanocomposites were characterized and their thermo-oxidative stability during melt processing and under long-term thermal test conditions was investigated. PLA nanocomposites containing the (AO)OM-Mt showed higher oxidative stability, along with better clay dispersion, compared to PLA-nanocomposites containing commercial clay and a free hindered phenol antioxidant. Obtained results can be explained considering that (AO)OM-Mt may act locally, at the interface, between the silicate layers and the polymer macromolecules, thus contributing to the observed improved stability of the polymer both during processing and under long-term thermal-oxidative conditions.</p>