Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rantanen, Juuso

  • Google
  • 1
  • 3
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Gel structure phase behavior in micro nanofibrillated cellulose containing in situ precipitated calcium carbonate21citations

Places of action

Chart of shared publication
Gane, Patrick A. C.
1 / 6 shared
Maloney, Thaddeus
1 / 6 shared
Dimić-Mišić, Katarina
1 / 9 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Gane, Patrick A. C.
  • Maloney, Thaddeus
  • Dimić-Mišić, Katarina
OrganizationsLocationPeople

article

Gel structure phase behavior in micro nanofibrillated cellulose containing in situ precipitated calcium carbonate

  • Gane, Patrick A. C.
  • Rantanen, Juuso
  • Maloney, Thaddeus
  • Dimić-Mišić, Katarina
Abstract

<p>Speciality high-strength board, packaging grades, and novel cellulose-based nanocomposites may incorporate microcellulosic nanofibrillated materials (MNFC), although the rheological properties of such strongly water sorbing structures are challenging for processing technologies. This study introduces rheological methods for the evaluation of dewatering and flow behavior of such high consistency furnishes to exemplify the effect of energy input on microfibrillar material (MFC), as produced by a combination of enzymatic pretreatment and increased levels of fluidization. The large number of fibril contact points act to entrap water, held both on the fibril surface as immobilized water and in the interfibril spacing forming the gel structure. Tuning of the rheological and dewatering properties has been enabled by in situ precipitation of calcium carbonate filler (in situ PCC) on the MFC, which results in the production of a more uniform furnish. Such in situ PCC coated MFC fibrils incorporated into furnish were seen to increase dewatering rate over that of the furnish mix without the in situ precipitated filler primarily because of the reduction in total surface area of the fibers and fibrils when the pigment is present on the fibrillary surface.</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • surface
  • phase
  • strength
  • precipitation
  • forming
  • Calcium
  • cellulose