Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mittal, V.

  • Google
  • 1
  • 1
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Noncovalent assembly of carbon nanofiber–layered double hydroxide as a reinforcing hybrid filler in thermoplastic polyurethane–nitrile butadiene rubber blends9citations

Places of action

Chart of shared publication
Srivastava, S. K.
1 / 4 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Srivastava, S. K.
OrganizationsLocationPeople

article

Noncovalent assembly of carbon nanofiber–layered double hydroxide as a reinforcing hybrid filler in thermoplastic polyurethane–nitrile butadiene rubber blends

  • Srivastava, S. K.
  • Mittal, V.
Abstract

<jats:title>ABSTRACT</jats:title><jats:p>A new synthetic route was applied to develop carbon nanofiber (CNF)–layered double hydroxide (LDH) hybrid through a noncovalent assembly using sodium dodecyl sulfate as bridging linker between magnesium–aluminum LDH and CNF and then characterized. Furthermore, this hybrid was used as nanofiller in thermoplastic polyurethane–acrylonitrile butadiene rubber (TN; 1:1 w/w) blend. Mechanical measurements showed that the 0.50 wt % hybrid loaded TN blend exhibited the maximum improvements in the elongation at break, tensile strength, and storage modulus of 1.51 times and 167 and 261% (25 °C), respectively. Differential scanning calorimetric analysis and thermogravimetric analysis showed maximum improvements in the melting temperature (5 °C), crystallization temperature (17 °C), and thermal stability (14 °C) in the 0.50 wt % surfactant modified carbon nanofiber–LDH loaded blend compared to the neat blend. Such enhancement in the properties of the TN nanocomposites could be attributed to the homogeneous dispersion, strong filler–blend interfacial interaction, and synergistic effect. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. <jats:bold>2016</jats:bold>, <jats:italic>133</jats:italic>, 43470.</jats:p>

Topics
  • nanocomposite
  • dispersion
  • Carbon
  • Magnesium
  • Magnesium
  • aluminium
  • strength
  • layered
  • Sodium
  • thermogravimetry
  • tensile strength
  • interfacial
  • thermoplastic
  • rubber
  • crystallization
  • melting temperature
  • surfactant
  • crystallization temperature
  • nitrile