Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chiriac, Rodica Elena

  • Google
  • 6
  • 28
  • 199

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2019High-temperature-reactivity of Al–Ti alloys in contact with SiC21citations
  • 2015Thermal conductivity of polyimide/boron nitride nanocomposite films35citations
  • 2014Simultaneous precipitation of magnesite and lizardite from hydrothermal alteration of olivine under high-carbonate alkalinity75citations
  • 2013Sequential precipitation of a new goethite-calcite nanocomposite and its possible application in the removal of toxic ions from polluted water32citations
  • 2013Enhancement of Thermal Conduction of Polyimide/Boron Nitride Nanocomposites5citations
  • 2008Details on the formation of Ti2Cu3 in the Ag-Cu-Ti system in the temperature range 790-860 °C31citations

Places of action

Chart of shared publication
Passerone, A.
1 / 5 shared
Muolo, M. L.
1 / 4 shared
Valenza, F.
1 / 16 shared
Toche, F.
2 / 3 shared
Cacciamani, G.
1 / 7 shared
Gambaro, S.
1 / 5 shared
Dezellus, O.
1 / 13 shared
Saysouk, François
2 / 3 shared
Salles, Vincent
2 / 9 shared
Belkerk, Boubakeur
1 / 1 shared
Toche, Francois
2 / 4 shared
Diaham, Sombel
2 / 32 shared
Locatelli, Marie-Laure
2 / 25 shared
Scudeller, Yves
2 / 2 shared
Lafay, Romain
1 / 1 shared
Montes-Hernandez, German
2 / 5 shared
Findling, Nathaniel
2 / 6 shared
Janots, Emilie
1 / 1 shared
Toche, François
1 / 2 shared
Renard, François
1 / 7 shared
Ghanbaja, Jaafar
1 / 45 shared
Belkerk, B. E.
1 / 2 shared
Bosselet, F.
1 / 9 shared
Andrieux, J.
1 / 10 shared
Sigala, C.
1 / 1 shared
Viala, J. C.
1 / 8 shared
Dezellus, Olivier
1 / 16 shared
Sacerdote-Peronnet, M.
1 / 5 shared
Chart of publication period
2019
2015
2014
2013
2008

Co-Authors (by relevance)

  • Passerone, A.
  • Muolo, M. L.
  • Valenza, F.
  • Toche, F.
  • Cacciamani, G.
  • Gambaro, S.
  • Dezellus, O.
  • Saysouk, François
  • Salles, Vincent
  • Belkerk, Boubakeur
  • Toche, Francois
  • Diaham, Sombel
  • Locatelli, Marie-Laure
  • Scudeller, Yves
  • Lafay, Romain
  • Montes-Hernandez, German
  • Findling, Nathaniel
  • Janots, Emilie
  • Toche, François
  • Renard, François
  • Ghanbaja, Jaafar
  • Belkerk, B. E.
  • Bosselet, F.
  • Andrieux, J.
  • Sigala, C.
  • Viala, J. C.
  • Dezellus, Olivier
  • Sacerdote-Peronnet, M.
OrganizationsLocationPeople

article

Thermal conductivity of polyimide/boron nitride nanocomposite films

  • Saysouk, François
  • Salles, Vincent
  • Belkerk, Boubakeur
  • Toche, Francois
  • Diaham, Sombel
  • Chiriac, Rodica Elena
  • Locatelli, Marie-Laure
  • Scudeller, Yves
Abstract

The thermal conductivity of polyimide/boron nitride (PI/BN) nanocomposite thin films has been studied for two sizes ofBN nanofillers (40 and 120 nm) and for a wide range of content. A strong influence of BN particle size on the thermal conductionof PI has been identified. In the case of the largest nanoparticles (hexagonal-BN), the thermal conductivity of PI/h-BN (120 nm)increases from 0.21 W/mK (neat PI) up to 0.56 W/mK for 29.2 vol %. For the smaller nanoparticles (wurtzite-BN), PI/w-BN(40 nm), we observed two different behaviors. First, we see a decrease until 0.12 W/mK for 20 vol % before increasing for higher fil-ler content. The initial phenomenon can be explained by the Kapitza theory describing the presence of an interfacial thermal resist-ance barrier between the nanoparticles and the polymer matrix. This is induced by the reduction in size of the nanoparticles.Modeling of the experimental results allowed us to determine the Kapitza radius aKfor both PI/h-BN and PI/w-BN nanocomposites.Values of aKof 7 nm and >500 nm have been obtained for PI/h-BN and PI/w-BN nanocomposite films, respectively. The valueobtained matches the Kapitza theory, particularly for PI/w-BN, for which the thermal conductivity is expected to decrease comparedto that of neat PI. The present work shows that it seems difficult to enhance the thermal conductivity of PI films with BN nanopar-ticles with a diameter <100 nm due to the presence of high interfacial thermal resistance at the BN/PI interfaces.VC2015 Wiley Periodi-cals, Inc. J. Appl. Polym. Sci. 2015, 132, 42461

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • theory
  • thin film
  • nitride
  • mass spectrometry
  • Boron
  • interfacial
  • thermal conductivity