People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van, M. Drongelen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Flow-induced solidification of high-impact polypropylene copolymer compositions : morphological and mechanical effects
Abstract
Polypropylene-based impact copolymers are a complex composition of matrix material, a dispersed phase and many optional modifiers. The final heterophasic morphology of such systems is influenced significantly by the processing step, adding an additional level of complexity to understanding the structure-property relation. This topic has hardly been studied so far. The effect of thermal history and shear flow on the solidification process of three different compositions of a polypropylene-based impact copolymer, i.e., one base material and two compounds with either high density polyethylene or ethylene-co-octene added, is investigated. Samples are examined using differential scanning calorimetry, extended dilatometry, transmissions electron microscopy, and finally, tensile testing. With flow, the materials show pronounced flow-enhanced crystallization of the matrix material and deformed filler content. Compared to the base polymer, the stress–strain response of the compounded samples shows a lower yield stress and more pronounced influence of shear, reflected in the increasing strain hardening modulus.