People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hasan, Mir Mohammad Badrul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Tensile and impact properties of thermoplastic fibre hybrid composites based on air textured commingling hybrid yarns composed of carbon/aramid/polyamide 6 and carbon/glass/polyamide 6 filament yarns
- 2023Micro-Scale Model of rCF/PA6 Spun Yarn Compositecitations
- 2023Recent developments in yarn formation technology for producing innovative hybrid yarn structures from staple carbon and thermoplastic fibers for high-performance compositescitations
- 2023Development of an Innovative Glass/Stainless Steel/Polyamide Commingled Yarn for Fiber–Metal Hybrid Compositescitations
- 2022From Grave to Cradle - Development of Weft Knitted Fabrics Based on Hybrid Yarns from Recycled Carbon Fibre Reclaimed by Solvolytic Process from of EOL-Componentscitations
- 2022Processing of waste carbon and polyamide fibers for high performance thermoplastic composites: A novel manufacturing technology for unidirectional tapes structurecitations
- 2021Development of a new hybrid yarn construction from recycled carbon fibres for high-performance composites. Part III: Influence of sizing on textile processing and composite propertiescitations
- 2019Influence of process parameters on the tensile properties of DREF-3000 friction spun hybrid yarns consisting of waste staple carbon fiber for thermoplastic compositescitations
- 2017Investigations on the Manufacturing and Mechanical Properties of Spun Yarns Made from Staple CF for Thermoset Compositescitations
- 2013High temperature resistant insulated hybrid yarns for carbon fiber reinforced thermoplastic compositescitations
- 2011Electro-mechanical properties of friction spun conductive hybrid yarns made of carbon filaments for compositescitations
- 2009Correlation Between Wettability and Cleanability of Polyester Fabrics Modified by a Soil Release Polymer and Their Topographic Structurecitations
- 2009Comparison of tensile, thermal, and thermo‐mechanical properties of polyester filaments having different cross‐sectional shapecitations
- 2008Influence of the Cross-sectional Geometry on Wettability and Cleanability of Polyester Woven Fabricscitations
Places of action
Organizations | Location | People |
---|
article
High temperature resistant insulated hybrid yarns for carbon fiber reinforced thermoplastic composites
Abstract
<jats:title>ABSTRACT</jats:title><jats:p>With the increased use of carbon fiber reinforced composites (CFRC), the demand for the integration of insulated conductive wire/yarns in CFRC is increasing for additional function integrations such as sensoric, actoric, signal transfer, heating, etc. Between thermoset and thermoplastic matrix composites, the integration of insulated conductive materials is comparatively difficult due to the requirements of higher temperature and pressure during the consolidation of thermoplastic composites. Therefore, the need for insulating material able to withstand higher temperature for the use in thermoplastic CFRC is also high. Using DREF friction spinning technique, it is possible to manufacture yarns with a core‐sheath structure in which, as the core conductive wire/yarns and as the sheath different fiber formed materials can be used for the insulation of the core. In this study, the aspects of using different short/staple fibers such as polyester, Glass and Kynol as the sheath and the usable temperature range are revealed. Furthermore, the insulation property of such fibers after the application of different temperatures has been reported. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1179‐1184, 2013</jats:p>